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ABSTRACT

Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Di� erences of parameters, such
as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed
di� erences are determined by the di� erence in stellar mass between the two components. The mass ratio can be determined with
much higher accuracy than the actual stellar mass.
Aims. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and
both are low-luminosity red-giant stars.
Methods. We analyse four years ofKepler space photometry and we obtained high-resolution spectroscopy with the Hermesinstru-
ment. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The e� ective
temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were de-
termined through asteroseismology. The surface rotation period of the primary is determined from theKepler light curve. From
representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models,the measured
lithium abundance is compared with theoretical predictions.
Results. From seismology the primary of KIC 9163796 is a star of 1.39� 0.06 M� , while the spectroscopic mass ratio between both
components can be determined with much higher precision by spectral disentangling to be 1.015� 0.005. With such mass and a
di� erence in e� ective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced
stage of the �rst dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period
within 10 days.The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9+2:0

� 1:0. This is a low value
but not exceptional if compared to the sample of typical single �eld stars. The seismic average of the envelope's rotation agrees with
the surface rotation rate. The lithium abundance is in agreement with quasi rigidly-rotating models.
Conclusions. The agreement between the surface rotation with the seismicresult indicates that the full convective envelope is rotating
quasi-rigidly. The models of the lithium abundance are compatible with a rigid rotation in the radiative zone during themain sequence.
Because of the many constraints o� ered by oscillating stars in binary systems, such objects are important test beds of stellar evolution.

Key words. Stars: solar-type� stars: rotation� stars: oscillations� binaries: spectroscopic� stars: individual: KIC 9163796, KIC 4586817

1. Introduction

Rotation, activity and the surface abundance of lithium in astar
are subject to its internal structure and evolution (e.g.Skumanich
1972). The key parameter to understand stellar evolution is the
mass of the star. It is, however, challenging to determine stellar

? Based on observations made with theKepler space telescope and
the Hermesspectrograph mounted on the 1.2 m Mercator Telescope at
the Spanish Observatorio del Roque de los Muchachos of the Instituto
de Astrofísica de Canarias.

masses for objects that are not members of a stellar cluster or a
binary system. An overestimated mass leads to an underestimate
of the stellar age (e.g.Kippenhahn, Weigert, & Weiss 2013;
Salaris & Cassisi 2005, and references therein). For red-giant
stars the current uncertainty is typically better than� 30% (e.g.
Casagrande et al. 2016; Silva Aguirre & Serenelli 2016). Re-
cent independent studies byMosser et al.(2013), Epstein et al.
(2014) and Gaulme et al.(2016) gave strong indications that
the seismic scaling relations for solar-like oscillators (e.g.
Kjeldsen & Bedding 1995; Chaplin et al. 2011) are overestimat-
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Fig. 1. Light curve of KIC 9163796. The top and lower panels show the full light curve (Q0-Q17), smoothed with a �lter of 150 and 4 days,
respectively. The synthetic light curve, depicted as solidlight grey line is calculated from the four signi�cant frequencies from Table2. The time
base of the spectroscopic monitoring is indicated through the horizontal grey bar.

ing the stellar mass of red giants by about 15%. While the current
precision of the seismic inferred mass is about 5%, double-lined
spectroscopic binaries (SB2) however allow us to constrainthe
ratio of mass between the two stellar targets with a much higher
precision and accuracy than the masses of the two stellar com-
ponents can be determined. Furthermore, both stars in such sys-
tems have the same age and initial composition (unless originat-
ing from a rare capturing event). Therefore, the di� erences found
between the stellar component of such system can be accounted
to the di� erence in mass. Indeed, this makes such systems at-
tractive targets to study rotation, mixing and stellar evolution in
general.

Due to the low small rotation rates and the typically low ac-
tivity level, surface rotation of red-giant stars is notoriously dif-
�cult to measure from photometry. They also often rotate too
slowly to be resolved by the rotational broadening of the ab-
sorption lines, even with a high-resolution spectrograph.Only
recently,Ceillier et al.(2017) has performed a consistent search
amongst� 17000Keplerred giants, from which they determined
rotation periods for� 360 stars, of which a large fraction could
be binaries or mergers. Given the observational limitations, the
evolution of the surface rotation during the red-giant phase is
challenging to be monitored. Ironically, the rotation of the deep
interior of red-giant stars is nowadays much more straightfor-
ward to measure. By means of seismology,Beck et al.(2012)
constrained the core-to-surface rotation rate of red giants and by
analysing the average core rotation in a large set of red giants.
Mosser et al.(2012a) showed that stars in the red clump exhibit
slower core rotation than stars on the red-giant branch (RGB).
Through inversion techniques (Deheuvels et al. 2012, 2015;
Beck et al. 2014; Di Mauro et al. 2016; Triana et al. 2017), it is
in principle possible to determine also the rotation rate ofthe up-
per layers. Such a result has, however, has never been confronted
with independently determined surface rotation rates for red gi-
ants. On the main sequence, several studies have derived surface
rotation periods for several hundred stars (García et al. 2014a;
McQuillan et al. 2014). Benomar et al.(2015) found from as-
teroseismic inversion that the rotational gradients in solar-type

stars are �at and that rotation rates derived from stellar spots
give higher values than seismology.

In this context, the abundance of the fragile element lithium
(Li) depends on rotation, mixing as well as on the depth
of the convective zone and delivers good diagnostics for
stellar evolution for red-giant and main-sequence stars (e.g.
Zahn 1992, 1994; Charbonnel et al. 1994; Talon & Charbonnel
1998, Lambert & Reddy 2004; Castro et al. 2016; Guiglion et al.
2016; Beck et al. 2017dand references therein). These detailed
studies have shown that for red-giant stars Li becomes increas-
ingly depleted with decreasing e� ective temperature. The main
event of lithium-dilution is the �rst dredge-up (FDU), which
occurs at the bottom of the RGB, when the convective enve-
lope of the low-luminosity red-giant starts to deepen into the
star (e.g.Charbonnel & Balachandran 2000). This phase is, com-
pared to time scales of stellar evolution extremely short and it is
rare to �nd binaries where both components are undergoing the
FDU event at the same time. However, it is still not fully un-
derstood why less than 1% of red giants exhibit large surface
lithium abundances (seeBrown et al. 1989; Liu et al. 2014). In
those cases, the analysis highly bene�ts from asteroseismology
of red-giant stars, by measuring mass as well as identifyingevo-
lutionary stage (e.g.Silva Aguirre et al. 2014; Jofré et al. 2015).

When studying aspects of stellar evolution, such as the
lithium abundance on a star-by-star basis, binary systems pro-
vide an enormous analytical advantage. In contrast to compar-
ing two individual �eld stars, the analysis of components of
a double-lines spectroscopic binary system, which are bornat
the same time from the same cloud (e.g.Satsuka et al. 2017,
and references therein) allows to eliminate many uncertainty
factors as the two stars are equal in age, initial composi-
tion and starting conditions as well as the distance and in-
terstellar absorption. The analysis of the di� erences between
the two components of a binary system sheds light on pro-
cesses under the stellar surface, such as rotational mixingor
transport by gravity waves and initial conditions (e.g.Zahn
1994; Charbonnel & Balachandran 2000; Lebreton et al. 2001;
Grundahl et al. 2008; Appourchaux et al. 2015; Schmid & Aerts
2016, and references therein). This is especially interesting,if
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such systems are in phases of stellar evolution when small dif-
ferences in mass have a substantial impact.

Around 50 binary systems with at least one oscillating red-
giant component were observed by the NASAKepler space
telescope (Borucki et al. 2010). Stellar binarity of these objects
was indicated either through the presence of stellar eclipses
(Gaulme et al. 2013, 2014, 2016; Beck et al. 2015a) or from
the presence of tidally induced �ux modulations during the pe-
riastron passage (Beck et al. 2014) in the Kepler light curve.
Although all these objects were characterised through astero-
seismology. By now only three binaries with a red-giant com-
ponent have been analysed in detail usingKepler photome-
try and ground-based spectroscopy, KIC 8410637 (Hekker et al.
2010; Frandsen et al. 2013), KIC 5006817 (Beck et al. 2014),
and recently KIC 9246715 (Rawls et al. 2016). In another, study
soon to appear,Themeßl et al.(2017) present a reanalysis of
KIC 8410637 from the full 4 years ofKepler photometry and
extended spectroscopic monitoring and present a detailed anal-
ysis of KIC 6540750 and KIC 9540226. On the main sequence,
several binary stars have been analysed, such as KIC 7510397
(Appourchaux et al. 2015), KIC 10124866 (White et al. 2017) or
the system of 16 Cyg A&B (Metcalfe et al. 2015; Davies et al.
2015) in which both components are oscillating. The red-giant or
sub-giant primaries of only few binary systems, Procyon,� 1 Tau,
� Herculi, were studied with seismology through the ground-
based observations, utilising high-resolution spectroscopy with
a meter-per-second accuracy (Arentoft et al. 2008; Beck et al.
2015b; Grundahl et al. 2017, respectively).

In this paper, we use photometric data from theKepler
space telescope and Hermesground-based spectrograph (Sec-
tion2). A comprehensive analysis of the light curve (Section3),
spectroscopy (Section4), and the global asteroseismic parame-
ters seismology for both stellar components (Section5) and the
seismically determined radial rotational gradient in the primary
(Section6) of the binary system KIC 9163796 (TYC 3557 2118
1, V = 9.82 mag) is presented. In Section8 we discuss the ef-
fects of stellar activity on the primary. This system yieldswell-
constrained input parameters for the theoretical modelling of the
mixing of chemical species, in particular of lithium (Section7)
and the tidal evolution of the system (Section9). Finally, the con-
clusions of this paper are summarised in Section10.

2. Observations

The binary nature of the system KIC 9163796 was �rst reported
by Beck et al.(2014, hereafter referred to as BHV14) from 8
quarters ofKepler observations (Q, i.e. 90-day data segments).
BHV14 reported the detection of 18 binary systems, which ex-
hibit an ellipsoidal �ux modulation during the phase of closest
encounter of the two stellar components (periastron). These stars
are colloquially referred to asHeartbeat stars, a term coined
by Thompson et al.(2012). As most of the systems reported by
BHV14, KIC 9163796 is not eclipsing, though it exhibits clear
ellipsoidal �ux modulation every 121.3 days (Figure1, bottom
panel). This feature will be discussed in more detail in Section9.
All systems were monitored with the Hermesspectrograph in
2013 by BHV14 and found to be eccentric with 0.2. e. 0.8.
From this sample, KIC 9163796 is one of the most interesting
systems from a spectroscopic point of view. Visual inspection of
the spectroscopic observations and the average line pro�les from
cross correlation show that this system is an obvious double-
lined spectroscopic binary (SB2). Throughout this paper, we will
refer to the brighter and more massive component as theprimary
(or for parameters the index 1) and fainter, less massive star as

Table 1.Journal of observations and the radial velocities for both com-
ponents of the system KIC 9163796.

BJD' ExpTime S/N(Mg) RV1 RV2
[days] [s] [km/s] [km/s]

6388.6218 750 50 -14.70 -8.16
6392.6194 1250 65 -16.41 -4.34
6415.6180 1200 70 -21.06 -0.19
6432.5633 1800 80 -21.62 0.30
6438.7131 600 50 -21.37 0.18
6454.6504 1800 85 -19.12 -2.01
6457.7038 400 40 -18.23 -2.75
6463.4188 600 40 -15.76 -5.47
6469.5667 1800 80 -10.88 -10.88
6472.4185 400 30 -7.35 -12.84
6479.5045 1800 85 13.22 -34.67
6481.4543 1800 90 25.55 -47.66
6483.4543 1800 60 41.33 -63.22
6485.5717 1800 80 48.50 -71.13
6488.4878 1800 75 30.87 -53.19
6506.3947 600 35 -11.92 -11.92
6510.6143 1200 55 -14.93 -7.19
6512.3816 600 40 -15.78 -6.00
6515.5870 600 40 -17.09 -3.88
6524.5240 600 40 -19.54 -1.85
6533.6284 600 40 -20.74 -0.44
6535.4217 600 45 -21.03 -0.41
6542.4943 600 35 -21.54 0.06
6555.4203 600 50 -21.65 0.18
6560.3886 600 50 -21.37 0.02
7170.5893 1800 80 -21.03 -0.13
7198.6549 1050 60 -10.19 -10.19
7239.5499 1800 80 -15.26 -6.40

Notes.The midpoint of the observation in the abbreviated barycentric
julian date, (BJD'= BJD - 2450000.0), exposure times of each individ-
ual spectrum, the signal to noise at the échelle order 69, andthe de-
rived radial velocities for the high (RV1) and small pro�le (RV2) in the
cross correlation function. We adopt the 2� -threshold of 140 m/s of the
night-to-night stability as the typical uncertainty of themeasurement.
The horizontal line marks the beginning of the observationsin 2015.

the secondary(index 2), respectively. Although the inclination
cannot be determined precisely due to the lack of eclipses, the
SB2 nature on the other side allows for the determination of the
mass ratioq, separation of the individual spectra of the compo-
nents and therefore detail atmospheric diagnostics.

2.1. Space photometry

The Kepler light curve of KIC 9163796, depicted in Figure1,
covers overs 1470 days (Q0-Q17) with a duty cycle higher than
90%. The light curves of individual quarters were extractedfrom
the target pixel data followingBloemen(2013) and stacked fol-
lowing García et al.(2011). Regular gaps originate from dump-
ing the saturated angular momentum of the reaction wheels and
the interruptions from data download and spacecraft roll are
complicating the spectral-window function. These alias frequen-
cies are dominating the high-frequent regime of the power spec-
tral density in ppm2/� Hz (hereafter PSD) and if not corrected
for, the low-amplitude oscillation signal is hidden by the win-
dow function. To reduce these e� ects, data gaps of up to two
days in the light curve were �lled through an inpainting tech-
nique described byGarcía et al.(2014b).
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Fig. 2. Analysis of the long periodic light curve modulation of KIC 9163796 in the period range between 20 and 200 days. The left panel depicts
the wavelet analysis of the full time series in period space.Period regions in the wavelet for which the window function is larger than the covered
time base are indicated through a grid pattern. The right panel shows the GWPS.

From a visual inspection of the individualKeplerquarters, a
long periodic photometric variation becomes apparent (Figure1,
top panel). To preserve this variation in the stacked light curve,
the individual quarters were stitched according to their slope and
smoothed with a running triangular smoothing function, with a
width of 150 days. This approach allows us to remove the 380-
day �ux modulation, originating from theKepler orbit, but pre-
serves the signature from spots and ellipsoidal modulationas
shown in the bottom panel of Figure1. To remove the spot sig-
nal but preserve the �ux modulation, originating from binarity,
a second triangular �lter with a width of 4 days was used. The
resulting light curve containing spot modulations as well as the
'unspotted' version of the light curve, is shown in the top and
bottom panel of Figure1, respectively. For both light curves the
PSD is computed. We note that the amplitude of the oscillation
signal is very small, so we can only detect the oscillation sig-
nature obtained with the inpainted data owing to the increased
signal-to-noise (S/N) ratio.

2.2. Ground-based spectroscopy

We obtained 25 spectra spread over about 170 days in 2013
(partly published in BHV14), and we revisited the system in
2015 to take 3 additional spectra during about 70 days. All
spectra were obtained with theHigh E� ciency and Resolution
Mercator Echelle Spectrograph(Hermes, Raskin et al. 2011;
Raskin 2011) mounted on the 1.2 m Mercator telescope at the
Spanish Observatorio del Roque de los Muchachos of the Insti-
tuto de Astrofísica de Canarias. The spectrograph has a resolving
power of R' 85 000 and covers a wavelength range between 375
and 900 nm.

The journal of the observations is given in Table1. Exposure
times were typically chosen to range between 600 and 1800 sec-
onds and lead to a S/N of typically better than 40 in the range of
the Mgi triplet (� 518 nm). The S/N is measured from the gain
corrected instrumental �ux at the centre of the 69th échelle order
of Hermes, which corresponds to the region containing the Mg
triplet.

Table 2. Long periodic variations found in KIC 9163796 from the
wavelet and Fourier analysis.

H Frequency period phase Amplitude S/N
[� Hz] [day] [] [ppm] [mmag]

w1 � 0.088 131� 11 � � � �
w2 ' w1�2 0.168 69� 4 � � � �

f1 � 0.087 133.036 0.335 12958.4 12.4 15.8
f2 ' f1�2 0.163 70.827 0.316 3904.1 3.7 4.4
f3 � 0.070 166.381 0.801 3781.9 3.6 4.0
f4 ' f1 0.083 140.128 0.095 3690.5 3.5 4.5

Notes.The number of modulation component from the wavelet analy-
sis (wi) and the Fourier decomposition (fi) is given. The harmonic rela-
tion to other period components, frequency, period, phase with respect
to the zero point, the semi-amplitude in parts-per-millionand milli-
magnitudes are reported. The �nal column gives the signal-to-noise of
the frequency, which was computed for each oscillation modewithin a
frequency box of 0.1 c/d.

The raw data were reduced with the instrument speci�c
pipeline. The radial velocities were derived through weighted
cross-correlation of each spectrum with an Arcturus template.
The best results are obtained by using the wavelength range be-
tween 478 and 653 nm for the cross correlation. The response
of the cross correlation function clearly shows a double-peaked
structure with both peaks moving in anti phase, con�rming the
SB2 nature of the system. For more details of the reduction
process as well as the observation of red-stars in binaries with
Hermes, we refer toRaskin et al.(2011) andBeck et al.(2014,
2015b), respectively.

3. Long periodic brightness variations

Photometric rotational variability is found only for a small frac-
tion of the red giants observed with theKepler space telescope
(Ceillier et al. 2017). KIC 9163796 is one of these rare cases and
falls into the less-populated long periodic tail of the distribution
found byCeillier et al.(2017). Over the course of a year a star
is observed by 4 di� erent CCD detectors with varying system-
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atic properties, because theKeplertelescope is rotated at the end
of each quarter by 90 degrees to keep the solar cells pointed at
the Sun. Therefore, intrinsic variations with periods longer than
about 90 days can only be detected reliably if their amplitudes
are strong enough. It has been shown byCeillier et al. (2017)
that fromKepler light curves, rotation periods up to� 175 days
can be investigated.

The frequency analysis, depicted in the left panel of Figure2
follows the approaches ofGarcía et al.(2014b) andCeillier et al.
(2017), using a wavelet decomposition with a Morlet mother
wavelet. By collapsing this decomposition on the periods axis,
the so-called Global Wavelets Power Spectrum (GWPS) is pro-
duced, which is shown in Figure2 in the right panel. The GWPS
reveals signi�cant power at periods of 131� 11 and 69� 4 days
(seeTable2), and is otherwise �at. The reported uncertainty cor-
responds to the width of the peak pro�le in the GWPS and is
partly governed by the temporal variation or the lifetime ofthe
spots. By using the program Period04 (Lenz & Breger 2005),
we performed a Fourier decomposition through prewhitening,
and found four signi�cant frequencies at S/N � 4 (Breger et al.
1993). The Fourier parameters of the extracted signi�cant fre-
quencies are reported in Table2 and the resulting �t is shown in
Figure1. A good agreement between the two di� erent analysis
techniques is found for the two dominant variation time scales.

The� 130-day period of the main �ux modulation is close to
the binary orbital period of� 120 days. Formally, the uncertainty
of the photometric period would agree with the orbital period.
This measurement error however comprises many di� erent ef-
fects such as temporal variation of spots or instrumental e� ects.
We note that GWPS and Fourier decomposition, two methods
sensitive to di� erent systematic noise sources, agree well on the
rotation period (Table2). This period of� 130 days is also not a
multiple of the quarter length of 90 days, as it would be expected
for instrumental periods (e.g.García et al. 2014a; Ceillier et al.
2017). Therefore, we consider this period to originate from the
stellar signal rather than being an instrumental artefact.

Di� erential rotation is expected to have an e� ect on the mea-
sured rotation period, since spots are not expected to be located
exactly on the equator and therefore will not deliver the ac-
tual equatorial rotation period. For red-giant stars, mainly solar-
like pro�les of di� erential surface rotation have been detected
through Doppler-imaging. For example,Künstler et al.(2015)
discussed a solar-like latitudinal di� erential rotation pro�le at
the surface about 10 times weaker than in the Sun. However, ina
few cases also the detection of anti-solar di� erential rotation pro-
�les were reported (K �ovári et al. 2015). From the shear-factors
describing the di� erential rotation, the solar-like case would give
a di� erence in the rotation period at the pole of+2 days with re-
spect to the equator. In the anti-solar case, the rotation period of
the pole would be 5 days shorter than the one of the equator. For
both assumed types of rotation, the di� erence between surface
rotation and orbital period does not lead to a satisfying solution.

From spectroscopy we know that the primary is substan-
tially brighter than the secondary (see following Section4). It
can therefore be argued that the spots originate solely fromthe
primary, as it outshines the secondary. With periods at hand, we
now can discuss the lightcurve variation in Figure1 in a more
precise way. The periodic and well-de�ned minima in the pho-
tometric variation occur quite regularly with the main photomet-
ric period of (� 133, f1). The shape of the maximum however is
more complex, as it consists of a double-peak structure, whereby
the two peaks change their absolute and relative amplitude over
time. Only in cases where the �rst maximum per cycle is lower
than the second, the photometric minimum is early with respect
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Fig. 3. Radial velocities and orbital solutions for the primary andsec-
ondary components of KIC 9163796, depicted in blue and red, respec-
tively. Observations from 2013 are represented through dots, while ob-
servations from 2015 are marked as diamonds. The depicted orbital so-
lution originates from spectral disentangling and was shifted by the sys-
tematic velocity to match with the measured RVs.

to the main photometric time scalef1. Therefore, over the time,
covered by theKepler photometry, no phase shift of the pattern
is found, as it would be expected for spots on a di� erentially ro-
tating surface. In a series of papers,Jetsu et al.(2017, and refer-
ences therein) suggested that, spots in chromosphericallyactive
single or binary stars are located in long-lived active longitudes,
which are separated by� 180 degrees. In active stars, the spot
distribution di� ers with respect to the Sun, for which spots are
evenly distributed in a band of latitude. The latitudinal di� eren-
tial rotation in these stars is probably weak and the change in
the light curve comes from the shift of activity between the two
regions. This explanation is in agreement with the the double-
peak structure, observed in the maximum. This picture is also
�t by the 69-day modulation (� f1/2), which is likely produced
by the apparition of spots or active regions on opposite sides
(McQuillan et al. 2014).

As the solar and anti-solar scenarios of di� erential surface
rotation cannot explain the di� erence between surface rotation
and orbital period, and the 4 years ofKeplerphotometry do not
indicate a strong level of di� erential surface rotation, we con-
sider that the system is not synchronised. A surface rotation pe-
riod of 130 d is also a normal value when compared to other red
giants (Ceillier et al. 2017).

The peak-to-peak amplitude of about 0.025 mag (Table2) is
large enough to be easily detectable from ground-based multi-
colour photometry using small-sized telescopes utilisingdi� er-
ential photometric techniques to extend the lightcurve forspot
modelling beyond the four years of data provided by theKepler
mission. (e.g.Breger et al. 2006; Saesen et al. 2010).

4. Spectroscopic analysis

The visibility of both spectral components in the compositespec-
trum allows a full characterisation of their atmospheric proper-
ties, beside determination of their mass ratio. The spectroscopic
observations are well sampled over the orbital cycle (Table1 and
Figure3). Therefore, we have optimal conditions to investigate
both components with spectroscopic tools. The radial veloci-
ties for both components were measured by �tting two Gaus-
sians to the double-peaked cross-correlation response function
of each spectrum. As error of the measurements, we adopt the

Article number, page 5 of 20



A&A proofs:manuscript no. beck_KIC9163796_accepted

Table 3.Orbital solutions for KIC 9163796.

Parameter Unit
� T [day] 850
N [#] 28
Porbit (�xed) [day] 121.3
Tperi [day] 2456485.53� 0.03
e [] 0.692� 0.002
! [rad] 176.0� 0.1
K1 [km/s] 35.25� 0.12
K2 [km/s] 35.77� 0.13
q [] 1.015� 0.005

Notes.The set of optimal orbital elements found through spectral dis-
entangling with FDBinary is reported. The timebase� T and the number
of data pointsN. The orbital periodPorbit from Kepler photometry, the
periastron passageTperi and longitude
 of periastron, the eccentricity
e, the velocity of the system
 , the radial velocity amplitudes of both
componentsK1 & K2, and the corresponding mass ratioq= M1/M2.

Table 4.Fundamental parameters derived from unconstrained �tting.

Parameter Unit Primary Secondary
E� ective temperature,Te� [K] 5020� 100 5650� 70
Surface gravity, logg [dex] 3.14� 0.2 3.48� 0.3
Microturbulence,vmicro [km/s] 1.2� 0.3 1.43� 0.2
Proj. surface rotation,vsini [km/s] 4.7� 0.5 5.0� 0.5
Metallicity, [M/H] [dex] -0.37� 0.1 -0.38� 0.1
Lithium, A(Li) [dex] 1.31� 0.08 2.55� 0.07
Light factors 0.63� 0.03 0.37� 0.02
Magnitude di� erence,� mV [mag] 0.58� 0.08
Apparent magnitude [mag] 10.32� 0.04 10.90� 0.09

1-� level (70 m/s) of the night-to-night stability of the Hermes
high-resolution observing mode. The resulting RVs' are listed
in Table1 and depicted in Figure3. The radial velocity ampli-
tudes, visible in Figure3 from this simple approach show that
the two components have relatively similar amplitudes, indicat-
ing a mass ratio close to unity.

On �rst sight, it might look surprising that stars with such
similar mass reveal quite di� erent line depths for the two bi-
nary components (see Figure4, or Figure 2 inBeck et al. 2017e).
We therefore have good reasons to speculate at this point that
both stars di� er substantially in their fundamental parameters
and therefore in their �ux contribution. To determine the fun-
damental parameters of both stellar components, their individ-
ual contributions need to be extracted from the SB2-composite
spectrum. Spectral disentangling (hereafter alsospd) is a pow-
erful technique, which enables separation of individual spectral
components from a series of composite spectra of a binary sys-
tem, simultaneously optimising the orbital elements of a binary
(Simon & Sturm 1994). For KIC 9163796 however, the clearly
visible SB2 signature fortunately allows us to obtain reliable ini-
tial guesses on the orbital and fundamental parameters of both
components a priori.

4.1. Spectral disentangling

We use the FDBinary code (Ilijic et al. 2004) implementing
spectral disentangling in the Fourier domain (Hadrava 1995)
to disentangle the composite spectra of KIC 9163796. Start-
ing from the initial set of orbital parameters, this approach
searches for the optimal set of orbital elements and individ-

ual spectra using a simplex algorithm. Due to possible imper-
fections in the normalisation and merging of échelle orders,
spdof a long spectral segment can produce undulations in the
disentangled spectra.

The orbital elements were determined from disentangling
a � 20 nm wide segment at 520 nm. We kept the orbital pe-
riod �xed to the value of 121.3 d, reported by BHV14 from
the autocorrelation of theKepler photometric light curve. Af-
ter �nding a consistent orbital solution, a major part of theop-
tical spectrum is disentangled with the orbital elements �xed.
The extracted segments are depicted in Figure4 and the or-
bital solution is reported in Table3. Our �nal solution for
KIC 9163796, which for the orbit of the primary is in good
agreement with BHV14, leads to the RV semiamplitudes of
K1 = 35.25� 0.12km/s andK2 = 35.77� 0.13km/s for the primary
and secondary, respectively. The uncertainties were derived from
a Gaussian �t to the parameter distributions from 5000 bootstrap
simulations (Pavlovski et al. in prep.). The mass ratio found is
q= M1=M2 = 1.015� 0.005, i.e. a di� erence of 1.5%.

The SB2 orbital model, derived from the set of optimal or-
bital elements is depicted in Figure3. To meet with the mea-
sured RVs the model was shifted by the systematic velocity of
the system. Using this orbital solution, also a 5 nm wide region
of the Li i 670.78nm resonance transition doublet was extracted
(Figure5). We further note that the RV measurements from the
year 2015 �t well the orbital solution based on the observations
from the year 2013. Therefore, we conclude that no third mas-
sive body is present in the system.

4.2. Fundamental parameters and abundances

This analysis was performed through a grid search for the
fundamental atmospheric parameters of a star, by compar-
ing grids of synthetic spectra to the observed spectrum
with the Grid Search in Stellar Parameters(gssp1) soft-
ware package byTkachenko(2015) (see alsoLehmann et al.
2011; Tkachenko et al. 2012) Synthetic spectra were com-
puted using the SynthV radiative transfer code (Tsymbal 1996)
based on a grid of model atmospheres precomputed with the
LLmodelscode (Shulyak et al. 2004).

As input we used the isolated spectra of the primary and
secondary component in the region of the Mgi triplet at about
518 nm as shown in Figure4. An unconstrained analysis was
performed, treating the two stars as independent sources and the
light factors are assumed to be wavelength independent. This al-
lows us to determine all fundamental parameters as well as the
light ratio. The fundamental parameters for both stellar compo-
nents from the best �t are reported in Table4.

The fundamental parameters show that the primary of
KIC 9163796 is about 600 K cooler than the secondary compo-
nent. A slightly higher logg is found for the secondary compo-
nent. The primary contributes about 63� 3% to the total �ux of
the system in Johnson V and the secondary contributes 37� 3%.
Tamajo et al.(2011) showed that it is possible to perform disen-
tangling even if no information on the light ratio of both stellar
components is available from external constraints (e.g. eclipses,
interferometry). The unconstrained solution ofspdis stable if
the light contributions add up to the 100%, as it is the case for
KIC 9163796. A well determined value of the light ratio is fun-
damental to obtain an accurate renormalisation of the two iso-

1 The GSSP package is available for download at
https://fys.kuleuven.be/ster/meetings/binary-2015/gssp-software-
package.
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Fig. 4. Disentangled spectra of KIC 9163796. The spectra of the primary in blue and secondary in red are shown in the left and rightspectrum,
respectively. The top panels shows the region around the H� line, while the bottom panel depicts the magnesium triplet at 518 nm, normalised to
the continuum �ux of the composite spectrum. The synthetic model of the best �t of the determination of fundamental parameters and metallicity
is shown as dashed grey line is shown depicted in the region ofthe Mg triplet.

lated spectra from their composite continuum to their individual
continuum.

The light ratios and the total �ux of the system translate into
a magnitude di� erence of 0.58� 0.08mag. The average peak-to-
peak amplitude of 0.025 mag (seef1 inTable2) is small com-
pared to and within the uncertainty of the obtained magnitude
di� erence. Therefore, the long-periodic photometric �ux modu-
lations as described in Section3 will not have an impact on the
renormalisation and hence the spectroscopic results.

The rotational broadening of the absorption lines does not
di� er (within the uncertainties) between the two stars, which is
not surprising, as it is known to be di� cult to determine precise
projected surface rotation velocities from lines, barely resolved
by the spectrograph (Gray 2005; Hekker & Meléndez 2007). For
red giants, the e� ects of rotation are also competing with the
line broadening from macro turbulence. From the spectroscop-
ically determined logg andTe� , the primary appears to be on
the low-luminosity regime of the Red-Giant Branch (hereafter
RGB). The temperature di� erence of� 600 K between the sec-
ondary and the primary is excluding the secondary ascendingon
the RGB. However,Te� , logg and the luminosity ratio are com-
patible with a late sub-giant or very early red-giant.

Comparing the derived metallicity of [M/H]' -0.375 to large
spectroscopic samples of red giants, such as the APOKASC sur-
vey of stars theKepler �eld of view ( Pinsonneault et al. 2014;
Holtzman et al. 2015) shows that this system is in the sparsely
populated under-abundant tail of the distribution of �eld stars.
Such abundances are typical in stars in the galactic halo or bulge
(Epstein et al. 2014) but the relatively low luminosity of an early
RGB (this identi�cation of evolutionary state later con�rmed in
the following section) suggests that the system is close andcan-
not be located in the halo. We note that, although the metallic-
ity for both components was allowed to vary freely in the �t, we
�nd both values within 0.01 dex and therefore basically the same
metallicity. This is expected for stars born at the same timefrom
the same primordial cloud. Substantially di� erent metallicities,
which would be con�rmed from visual inspection of the com-
posite spectra, could only be explained if binary system would
have formed by one component capturing the other.

The main abundance that is found to be signi�cantly vary-
ing between the two components is the one of the fragile el-
ement of lithium, A(Li)2 (Figure5), with A(Li) of 1.31� 0.08
and 2.55� 0.07dex for the primary and secondary, respectively.
The uncertainties in the Li abundances for both components
were determined taking into account the uncertainties in the
atmospheric parameters as they are listed in Table4. The less
evolved component is found to be higher by 1.2 dex than in
the low-luminosity red-giant primary component of the system.
Another case of a binary system with a strong di� erence in
the Li abundance is Capella.Torres et al.(2015) recently rede-
termined the lithium abundance for the primary and secondary
to be A(Li)Prim = 1.08� 0.11 and A(Li)Sec= 3.28� 0.13dex. This
leads to a di� erence of 2.2 dex between both components, being
found on the secondary clump and the main sequence, whereby
the more massive component has already undergone Li de-
pletion. We therefore can assume a similar scenario also for
KIC 9163796. Without a �rm constraint on the mass and posi-
tion of both stars in the Hertzsprung-Russell Diagram, it isdif-
�cult to distinguish between a lithium-rich giant or stars that
have not yet undergone the FDU (Charbonnel & Balachandran
2000) as it depends on the Li abundance and the rotational his-
tory of the progenitor of the star on the main sequence (e.g.
Talon & Charbonnel 1998).

As discussed in the next Section, these stars exhibits solar-
like oscillations, allowing to �nd a good mass estimates forthe
primary component that can serve as an input for stellar mod-
elling. The astrophysical inference of this di� erence will be dis-
cussed in the modelling of the system in Section7.

5. Global seismic analysis of the power spectrum

The power spectral density of KIC 9163796 exhibits oscillation
amplitudes that are substantially smaller than in normal, single-
�eld red-giant stars (Figures6, 7& 13). The dominant cause of
this e� ect is the photometric dilution of the seismic signal due to

2 We use the standard abundance notation in which A(Li)=
log[N(Li) /N(H)] + 12, where N(Li) and N(H) are the numbers of atoms
per unit volume of element Li and of hydrogen
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Fig. 5. Li i 670.78 nm resonance doublet in both components of
KIC 9163796. The spectra of the primary (top panel) and secondary
(bottom panel) components have been renormalised to the individual
continuum levels. The synthetic model of the best �t of the abundance
determination is shown as dashed grey line.

the bright companion, following

A diluted;i = A intrinsic;i � L i ; (1)

whereby for a given binary componentA diluted;i , A diluted;i are the
measured and the intrinsic oscillation amplitude, respectively,
andL i is the spectroscopically light factor (see Table4 and Sec-
tion4.1). Given the spectroscopic light ratio between the pri-
mary and secondary star of about 3:2, we can expect the mode
heights (in power density) to be reduced by a factor of about 3
to 5 compared to a single red giant. Furthermore, several studies
have suggested that stellar activity also reduces the amplitudes
of solar-like oscillations (e.g.Mosser et al. 2009; García et al.
2010; Dall et al. 2010; Chaplin et al. 2011; Bonanno et al. 2014;
Gaulme et al. 2014). In addition to the low amplitudes, the fre-
quency range of the oscillations (� 120-250� Hz, see left panel
of Figure6) is contaminated in the original power spectrum with
power that leaks from high-amplitude low-frequency variations
via the window function of the light curve. The analysis of the
PSD and comparison to other stars is therefore not straightfor-
ward.

The resulting PSD reveals an excess of oscillation power at
� 160� Hz (Figure6). Stellar evolution is quite fast on the giant
branch so that two stars of equal primordial chemical composi-
tion but slightly di� erent mass - as small as� 1% or even be-
low - can have signi�cantly di� erent radii. From the spectro-
scopic mass ratio we can therefore only constrain the location of
the secondary power excess in a rather larger frequency range
– from overlapping the primary power excess to a frequency
range typical for subgiants, well above the Nyquist frequency,
fNq ' 283� Hz.

The stellar radius and mass, can be determined through
the seismic scaling relations, (e.g.Kjeldsen & Bedding 1995;
Kallinger et al. 2010, 2012, 2014; Chaplin et al. 2011)
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Table 5.Seismic parameters derived for KIC 9163796.

Parameter Unit KIC 9163796 KIC 4586817
� max [� Hz] 165.3� 1.3 161.4� 0.4

A measured
puls ppm 29.1� 1.9 92.7� 1.5

A intrinsic
puls ppm 46.2� 4
� � [� Hz] 12.85� 0.03 12.759� 0.009

�� 02 [� Hz] 1.73� 0.05 1.62� 0.01
�� 1 [s] 80.78 79.05
� fmax [� Hz] 0.24 0.22

Notes.The rows� max, A puls, � � and�� 02 report the peak frequency, total
amplitude of the oscillation power excess, and the large andsmall fre-
quency separation of the central three radial orders for a given star.�� 1

quanti�es the true period spacing of dipole modes. The largest value of
the detected rotational splitting� f is also listed.

Table 6.Seismic fundamental parameters for KIC 9163796 determined
from seismic scaling relations and spectroscopicTe� .

Parameter Unit KIC 9163796 KIC 4586817
Evol. state RGB RGB

Te� [K] 4960� 140 4926� 91
M [M � ] 1.39� 0.06 1.36� 0.03
R [R� ] 5.35� 0.09 5.34� 0.04
L [L � ] 16� 2 15� 1

logg [dex] 3.12� 0.01 3.117� 0.004

Notes. The evolutionary phase RGB describes a H-shell burning red
giant on the ascending giant branch. Parameters for the primary star are
calculated from grid modelling based on� max, � � , and the spectroscopic
estimate forTe� . The secondary mass is estimated from the primary
mass andq and the other parameters are from grid modelling based on
� max, Te� , and the mass constraint.

by comparing the global seismic parameters, the central fre-
quency of the oscillation power excess,� max, and the large
frequency separation between consecutive radial modes,� � as
well as the spectroscopic e� ective temperature,Te� to the so-
lar reference values. Following the approach and solar refer-
ence values ofKallinger et al. (2010, 2012, 2014) we derive
� max= 165� 1� Hz and � � = 12.85� 0.03� Hz, which translates
into a mass and radius of 1.39� 0.06M� and 5.35� 0.09R� for the
primary, respectively. We note, that if no index is given, werefer
to parameters of the primary component and that the reported
errors are internal uncertainties, which are likely to be too opti-
mistic. The result shows a discrepancy of the values of mass and
radius of� 0.9 M� and� 4.5 R� , previously reported by BHV14.
The di� erence originates from the improved treatment of the
light curve with gap-�lling and inpainting techniques (forde-
tails see, e.g.Pires et al. 2009; García et al. 2014b). Because ev-
ery � 3 days one data point of the long-cadence observing mode
(30 min integrations) is rejected due to increased noise dueto the
on-board manoeuvre to withdraw the stored angular momentum
of the spacecraft gyroscopes, a periodic gap is introduced to the
data, which produces a high-frequency spectral window, which
can hide the low-amplitude oscillation signal. The qualityof the
lightcurve is improved with respect to BHV14, by inpaintingthe
gap through interpolation (for details seeGarcía et al. 2014b), as
well as by extending the length of the light curve by nearly a fac-
tor of two. Furthermore, the seismic data set was also corrected
for the e� ects of spots.
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Fig. 6. Power spectral density (left) and échelle diagram (right) of KIC 9163796. In the left panel, the original and smoothed spectrum are shown
as grey and black solid lines, respectively. The di� erent components that describe the granulation backgroundare shown as blue dashed, while
the white noise component as blue dash-dotted line. The two Gaussian envelopes to describe the power excess of the primary and re�ection of the
super-Nyquist power excess into the sub-Nyquist regime of the secondary are represented as red dotted lines. The combined �ts with and without
the oscillation components are depicted as red and blue solid lines.

The échelle diagram is shown in the right panel of Figure6
and the full list of all seismic global and fundamental parameters
is given in Table5 and6, respectively. The total pulsation ampli-
tudeA is de�ned as the square root of the integral over the power
density excess de�ned by the Gaussian envelope. Photometric
oscillation amplitudes quantify the light variation with respect to
the mean brightness of the star. Because the total brightness of
the binary system is larger than the mean brightness of the oscil-
lating star, the amplitudes are a� ected by photometric dilution,
but can be corrected if the light fractions are known (see Table4).
We refer to the amplitude which is corrected for the photometric
dilution as the intrinsic one. For the primary component we �nd
A intrinsic = 46� 4 ppm.

5.1. Detection of the secondary � max

Due to the low overall mode visibility, the oscillation spec-
trum of the primary star is di� cult to analyse. Furthermore,
Rawls et al. (2016) interpreted peaks which did not �t the
general mode pattern as overlapping power excess of pri-
mary and secondary component. To improve our understand-
ing of the power excess of KIC 9163796 and to exclude the
possibility that modes from the secondary add to the in-
dividual mode pattern, we searched for a comparison star
that follows closely the frequency pattern of the radial and
quadrupole modes of KIC 9163796's primary power excess. The
best match is found with KIC 4586817 (� max= 161.4� 0.4� Hz,
� � = 12.76� 0.01� Hz). To allow a better comparison, the two
oscillation spectra were normalised by their background signal
(Mathur et al. 2011; Kallinger et al. 2014). The frequency axis
is converted into radial orders via shifting the spectrum bythe
frequency of the central radial mode and by dividing by� � (see
alsoBedding & Kjeldsen 2010). From the representation of the
power spectrum in terms of radial orders (Figure7), it can be
seen that the frequency pattern of both stars is nearly identical.
Therefore all signi�cant peaks are originating from the primary
stellar component of KIC 9163796. If the secondary would have
had a� max value very close to the primary, it should exhibit os-
cillations with about 40% of the amplitudes of the primary. For
KIC 9163796, we can exclude the scenario of overlapping power
excesses as suggested for KIC 9246715 byRawls et al.(2016).

The power spectrum of KIC 9163796, as depicted in Figure6
and Figure7, can therefore be treated as the one of a single star.

To search for the power excess of the secondary component,
we included a second Gaussian component to the �tting stan-
dard approach of simultaneously �tting the granulation back-
ground and oscillation signal (Kallinger et al. 2014). Based on
the Bayesian evidence we �nd that a model with two Gaus-
sian components signi�cantly better �ts the observed PSD than
a model with only one Gaussian. Tentatively, also the number
of background components was allowed to vary to account for
the contribution of the secondary to the background. In the stan-
dard approach, two components are used (from 0.1� max to fNq).
Increasing the number of background components did, however,
not improve the �t.

According to this model the second power excess is lo-
cated at 215� 4� Hz with a measured total mode amplitude
of 10� 3 ppm. Correcting for photometric dilution, we �nd
� 30 ppm. The S/N is too low to be able to extract a value for
� � from the PSD. However, the measured� max of the secondary
is very close to the value of the primary, which appears to con-
tradict what was found from Figure7 and the discussion above.
It was shown and discussed in several papers, that power ex-
cesses, located above the Nyquist frequency for theKepler long
cadence data of� 283� Hz (also referred to assuper Nyquist)
are re�ected into the frequency regime below this value (e.g.,
Murphy et al. 2013; Chaplin et al. 2014, BHV14). Because these
stars are lower on the RGB or even subgiants, the intrinsic os-
cillation amplitudes are lower, which �ts the picture for the
detected� max of the secondary of KIC 9163796. In the super-
Nyquist case, the true� max;2 would be located around� 350 � Hz.
To decide from seismology alone which scenario is correct we
would need a clearly identi�ed comb-like pattern of the pressure
modes of the secondary power excess. Unfortunately, the mode
visibility of the secondary is too low to determine a reliable es-
timate for� � , so that neither the subgiant nor the red-giant sce-
nario can be rejected. However, the combination of asteroseis-
mology and spectral disentangling o� ers an additional way of
testing this hypothesis.

First, the spectroscopic fundamental parameters (derivedin
Section4) are incompatible with� max;2' 215� Hz as the temper-
ature and fractional light ratio are indubitably placing the sec-
ondary much further down, on the very early RGB, than the pri-
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mary. Furthermore, Beck et al. (in prep) propose a rewrittenform
of the seismic scaling relations, adapted to the output parameters
of spectral disentangling of the SB2 system� mass ratioq, the
ratio of the light factors,L , the e� ective temperatures and the
surface gravityg, � to gauge the ratio between the frequency of
the two power excesses. Following the relation,

� max;1

� max;2
=

q
L

�
 
Te� ;1

Te� ;2

!3:5

; (4)

one �nds � max;2=410� 50� Hz, which gives an agreement within
the re�ected� max of the secondary (� 350 � Hz) within 1.2� . If
we assume a light ratio of 60:40, which is within the uncer-
tainty of the spectroscopic solution,� 360 � Hz achieved. Using
the spectroscopic information of the surface gravity,

� max;1

� max;2
=

g1

g2
�
 
Te� ;1

Te� ;2

! � 0:5

; (5)

we obtain� max;2=340� 20� Hz, showing an even better agree-
ment with the expected peak frequency. Therefore, we �nd that
KIC 9163796 is a seismic binary with a sub and a super Nyquist
oscillating components.

5.2. Evolutionary stage & dipole mode period spacing

From the location of both power excesses clearly above 100� Hz
and the seismic mass, it is evident that both components of
the system are H-shell burning stars ascending the red-giant
branch (RGB). Even members of the secondary clump would
not reach such high values of� max;1 during their helium-core
burning phase. This is con�rmed by the observed period spacing
of about 57 s determined through autocorrelation of the mixed-
dipole modes, which evidently corresponds to a H-shell burning
star (Bedding et al. 2011; Mosser et al. 2011, 2014).

6. Rotational gradient and envelope rotation

Seismic analysis relies upon the comparison of observed os-
cillation frequencies extracted from the PSD to theoretically
computed frequencies to draw inference on stellar structure.
This is only possible with correctly identi�ed pulsation modes,
which is challenging for KIC 9163796 due to the low S/N of
the modes. Through the comparison with KIC 4586817, the ra-
dial and quadrupole modes are, however, clearly identi�ed (Fig-
ure7).

For a rotating star, the Coriolis force as well as the coordi-
nate transformation lift up the degeneracy of non-radial modes
of the same radial ordern and spherical degree`, but di� erent az-
imuthal orderm, and thereby forms 2̀+1 components. For slow
rotators with a rotation pro�le depending on the radial coordi-
nate only,
 (r), the mode frequency can be written as,

fn;`;m = fn;`;0 + m� � fn;` ; (6)

whereby� f represent the rotational splitting. The dipole modes
of the primary component of KIC 9163796 show a clear signa-
ture of rotational splitting (Figures7 and8).

6.1. Identi�cation & extraction of individual oscillation modes

The resulting frequency pattern of rotationally split mixed-
dipole modes in the power spectrum of a red giant can be
described through the asymptotic expansion, developed by

Mosser et al.(2012a,b). In this approach, the adjustable pa-
rameters are the so called asymptotic period spacing of dipole
modes,�� 1, the coupling factor� , betweenp- and g-modes
(seeShibahashi 1979; Unno et al. 1989), and the rotational split-
ting of the gravity-dominated dipole modes,� fmax. We fol-
lowed the grid search for the optimal combinations of�� 1
and � , as described byBuysschaert et al.(2016), leading to
�� 1 = 80.78s. From the manual analysis, a� fmax ' 0.29� Hz
was found. These values were con�rmed through the automated
search ofMosser et al.(2015). Therefore, the asymptotic ex-
pansion provides a �rm mode identi�cation of the individual
peaks as shown in Figure8. We note that the automated approach
indicates the existence of a secondary solution of 81.15s and
� fmax' 0.870� Hz. Such solution presents a special case, in which
the rotational splittings are on the order of or even larger than the
period spacing. In such, the rotational splitting is therefore not
de�ned by the close pairs of peaks but by the complementary
distance. After critically reviewing the solutions and from com-
parison of the PSD with KIC 4586817 (Figure7) we can rule out
the latter value.

For a full seismic analysis, the frequencies of the individ-
ual oscillation modes have to be extracted from the oscillation
spectrum. Only in the central three radial orders modes havea
su� cient S/N to be clearly distinguishable from noise peaks.
The determination of the mode parameters of individual oscil-
lation modes in the PSD of KIC 9163796 has been performed
with the Diamondscode ofCorsaro & De Ridder(2014). The
details of the Bayesian parameter estimation and model com-
parison by means of a nested sampling Monte Carlo algorithm
are described inCorsaro et al.(2015). The detection probability
P of an oscillation mode is de�ned asEpeak=(Eno;peak + Epeak),
whereE represents the Bayesian evidence of the �tting models,
one including and the other excluding the corresponding peak to
be tested (seeCorsaro & De Ridder 2014; Corsaro et al. 2015,
for more details).

In total six pairs of radial and quadrupole modes have been
measured (Table7) and 25 signi�cant dipole modes were iden-
ti�ed in the PSD (Table8). For ten dipole modes, the S/N al-
lowed a clear identi�cation of rotationally split components.
For the rotationally split modes, an additional identi�cation of
the azimuthal orderm, and � f is provided in Table8. Rota-
tional splittings ofg- and p-dominated mixed modes carry in-
formation about the rotation rate weighted towards the coreand
envelope, respectively. Since the character of the g-dominated
modes is governed by the properties of the core, the rotational
splitting of theg-dominated modes is predominantly determined
by the core rotation rate (Beck et al. 2012; Mosser et al. 2012a;
Goupil et al. 2013; Deheuvels et al. 2014; Di Mauro et al. 2016).
The situation is more complicated for the rotation rate of the
envelope. Even though the core contribution to the rotational
kernel of p-dominated modes is relatively small, the fast rotat-
ing core still contributes signi�cantly to the rotational splitting
of p-dominated modes. Therefore they need to be disentangled,
which is presently only possible by using theoretical models.

In principle, quadrupole modes are mixed modes as well
but the observable modes contain a higherp-mode contribu-
tion than dipole modes. This makes them less sensitive to the
core properties and more sensitive to the envelope rotation. For
KIC 9163796, however, the noisy spectrum prevents us to see
any split structure in quadrupole modes.
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Fig. 7. Normalised power spectral density of KIC 9163796 (top) and KIC 4586817 (bottom spectrum). The background contributionhas been
removed by division of the PSD through the background model.The frequency was divided by the respective large separation and centred on the
central radial mode. The frequencies of the` = 0 and 1 modes are marked by blue dotted and red dash-dotted vertical lines. The dotted horizontal
lines mark the traditional signi�cance threshold of 8 timesthe background signal.

The value of the rotational splitting� fn;` in Eq (6) can be
expressed as,

� fn;` =
1

2� In;`

Z R

r=0
Kn;`(r)
 (r)dr; (7)

whereIn;` is the mode inertia andKn;`(r) gives the rotational ker-
nel of a mode which depends on the mode eigenfunction (e.g.,
Cox 1980). R is the radius of the model for the given star.

The visibility of the di� erentjmj components is independent
of the rotation rate but is governed by the inclination between
the rotation axis towards the line of sight (e.g.Gizon & Solanki
2003; Ballot et al. 2006). In numerous works, (e.g.Ballot et al.
2006; Beck 2013; Deheuvels et al. 2015) it was shown that the
actual geometry (i.e., the height ratio between the centraland
jmj > 1 components) of a rotational multiplet in a solar-like os-
cillating star is strongly altered by lifetime e� ects of the stochas-
tic modes. This is especially true for g-dominated mixed modes
whose lifetime can be much longer than the time span covered by
Kepler observations. The inclination of the stellar rotation axis
should therefore be extracted with care. In case of KIC 9163796,
the geometry of the splittings is extremely variable. Therefore
we refrain from �tting the inclination but rather gauge the incli-
nation to be between 40-70� from visual inspection. From the
RV amplitude of the primary, we can estimate the mass function
to be,

M1 � sin3 i = 0:85308� 0:099M� : (8)

Using the seismic primary's mass, this function translatesinto
an inclination of� 58� , which falls fairly well into the range con-
strained through seismology. Stronger constraints on the incli-
nation could be provided from light curve �tting (e.g. BHV14)
which is currently beyond the scope of this paper.

6.2. Core rotation and surface rotation

To compute the rotational kernels for the modes listed in Tab.8
we use a representative model with 1.4 M� and 5.4 R� and Guen-
ther's nonadiabatic nonradial pulsation code (Guenther 1994).
The model was calculated with the Yale Stellar Evolution Code
(YREC; Demarque et al. 2008; Guenther et al. 1992) for near-
solar composition (Z = 0:02; Y = 0:28) assuming the solar

mixture byGrevesse et al.(1996) and a mixing length parameter
� MLT = 1:8. It has a He-core mass fraction of about 0.14.

For a more detailed picture of the rotational properties,
Eq. (7) needs to be inverted. To solve this equation, several in-
version techniques have been developed in the past aiming to
determine the internal rotation pro�le of the Sun (e.gHowe
2009, and references therein). The inversion of this integral is,
however, a highly ill-conditioned problem that requires, e.g., nu-
merical regularisation. BHV14 found that classical approaches
like the RLS method (e.g.,Christensen-Dalsgaard et al. 1990)
or the SOLA technique (e.g.,Schou et al. 1998) are not well-
suited for red giants. They easily become numerically unstable
and it is often impossible to evaluate the reliability of theresult.
Recently, in a comprehensive study of rotational inversiontech-
niquesDi Mauro et al.(2016) found that both methods, SOLA
and OLA fail to �t the averaging kernels for fractional radii
r=R? < 0.01. These methods agree in general on the overall ro-
tational gradient between the surface and the core. However, the
methods fail to agree on the rotation law in the lower region of
the convective envelope and are dependent on the chosen stellar
model.

We therefore follow the forward modelling approach from
Kallinger et al.(2017), which has proven its ability to accurately
reveal the rotational behaviour of a red giant (BHV14). The al-
gorithm computes synthetic rotational splittings for a model of
rigidly rotating shells and compares them to the observed split-
tings. To �t the individual rotation rates a Bayesian nestedsam-
pling algorithm is used. The advantage of this method is thatit
provides reliable parameters and their uncertainties as well as a
comparison of di� erent models (with, e.g., a di� erent number
of shells) to evaluate which model reproduces the observation
best. As for KIC 5006817 (BHV14) we �nd for KIC 9163796
that a 2-zone model (core and envelope) gives the most reliable
result and that the exact position of transition between core and
envelope rotation cannot be determined with the available ob-
servations. We therefore �x the border between the two shells
to a fractional mass of 0.14 (i.e., the He-core mass fractionand
approximate position of the H-burning shell that separatesthe
contracting core from the expanding envelope.).

The core and envelope of KIC 9163796 are found to rotate
with an average rate of 545� 9 and 79� 14 nHz, respectively.
The measured rotation rates translate into a core-to-envelope
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Fig. 8. Power-density spectrum of KIC 9163796. Each panel containsone radial order, depicting the original power spectrum as well as the
spectrum smoothed through the Mode identi�cations of the pure (theoretical)p modes for̀ = 0, 1, 2 and 3 which are indicated with blue, red,
green and yellow vertical bars, respectively. The e� ects of rotation are visible as the splitting of dipole modes(assumed� f = 290nHz), located
in the centre of each panel. The observed PSD is overlaid withthe theoretical frequencies of mixed-dipole modes (m= 0, solid thin lines) and
the theoretical frequencies of the rotationally split components (m= � 1, dashed thin lines). The components belonging to one rotationally split
multiplet are indicated through V-markers at the top of eachpanel.

Table 7.Extracted radial and quadrupole oscillation modes and their parameters for KIC 9163796.

N ` Frequency Amplitude FWHM P
[� Hz] [ppm] [� Hz] []

11 0 144:337� 0:009 7:44 +0:78
� 0:84 0:129+0:017

� 0:018 ...
12 0 157:204� 0:007 10:86+0:17

� 0:19 0:239+0:005
� 0:005 ...

13 0 170:133� 0:014 8:80 +0:41
� 0:43 0:378+0:015

� 0:015 ...
14 0 182:996� 0:021 10:92+0:39

� 0:30 0:561+0:021
� 0:020 ...

15 0 195:464� 0:017 8:51 +0:27
� 0:28 0:589+0:019

� 0:018 ...
16 0 209:046� 0:028 3:41 +0:33

� 0:34 0:285+0:052
� 0:044 1.000

11 2 142:824� 0:086 17:19+0:55
� 0:45 2:940+0:052

� 0:049 ...
12 2 168:432+0:084

� 0:047 17:09+0:22
� 0:25 2:005+0:088

� 0:068 ...
13 2 155:516� 0:008 6:65 +0:15

� 0:16 0:185+0:005
� 0:005 ...

14 2 181:071� 0:017 11:19+0:21
� 0:23 0:599+0:022

� 0:023 ...
15 2 194:031� 0:018 7:31 +0:35

� 0:42 0:484+0:032
� 0:029 ...

16 2 207:743� 0:047 7:71 +0:39
� 0:35 0:687+0:046

� 0:046 ...

Notes.The number of the radial order, spherical degree and azimuthal orderm of an oscillation mode. The parameters of the Lorentzian pro�le
describing the mode are given, the median centre frequency,the mode amplitude and its full width at half maximum (FWHM).For the case
of peaks with a lower S/N-ratio, the detection probabilityP is reported, which ranges between 0 and 1, whereby 1 corresponds to a detection
probability of 100%. A value '...' indicates modes with highS/N.

rotational gradient of 6:9+2:0
� 1:0. The core-rotation rate is a typi-

cal value on the RGB, compared to the large sample studies of
Mosser et al.(2012a). It is evident that the uncertainty of this
result is dominated by the relative error (� 18%) of the enve-
lope rotation rate. For KIC 9163796 we have, however, an es-
timate for the surface rotation rate from the dominant period
of the light curve modulation (f1 = 87� 8 nHz). The core-surface
rotation gradient is typical for RGB stars (
 core/
 envelope' 6 to
30 times, Beck et al. 2012, 2014; Deheuvels et al. 2012, 2014;
Di Mauro et al. 2016; Goupil et al. 2013; Triana et al. 2017) but
appears a the lower end of the values found so far. Yet we note
that this is small number statistics.

6.3. Rotation in the convective envelope & angular
momentum transfer

Using surface rotation rate derived fromKepler photometry,
we �nd a core-to-surface rotation rate of 6:3+0:7

� 0:6, which is in
good agreement with the seismic value. The consistency be-
tween the surface and seismic envelope rotation rate (whichrep-
resents the average rotation rate of the external 86% and 99%
of the mass and radius, respectively, of a representative model
of KIC 9163796) provides the observational evidence that the
rotational gradient in the convective envelope of red giants is
in fact very small or even zero. A similar result was found by
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Table 8.Extracted dipole modes and their parameters for KIC 9163796.

` m Frequency Amplitude FWHM or Height P � f
[� Hz] [ppm] [� Hz] or [ppm2/� Hz] [] [ � Hz]

1 ... 136:425+0:006
� 0:005 2:91 +0:26

� 0:28 0:043+0:008
� 0:008 1.000 �

1 ... 138:729+0:017
� 0:016 4:16 +0:49

� 0:45 0:102+0:017
� 0:019 1.000 �

1 ... 147:901+0:035
� 0:032 4:47 +0:30

� 0:32 0:388+0:049
� 0:049 0.674 �

1 ... 152:318+0:005
� 0:005 5:16 +0:16

� 0:18 0:232+0:016
� 0:012 ... �

1 ... 154:706+0:007
� 0:006 3:40 +0:08

� 0:07 0:075+0:002
� 0:002 1.000 �

1 ... 157:694+0:001
� 0:001 [sinc] 198:33+2:82

� 10:35 ... �
1 ... 164:389+0:017

� 0:013 8:97 +0:18
� 0:19 0:298+0:019

� 0:019 ... �
1 ... 176:627+0:014

� 0:013 12:08+0:17
� 0:18 0:318+0:009

� 0:009 ... �
1 ... 177:971+0:002

� 0:001 [sinc] 88:17 +0:94
� 1:08 ... �

1 ... 178:745+0:002
� 0:005 [sinc] 82:64 +1:03

� 0:86 ... �
1 ... 188:495+0:013

� 0:013 9:71 +0:50
� 0:43 0:285+0:012

� 0:011 ... �
1 ... 189:975+0:012

� 0:011 8:29 +0:21
� 0:21 0:249+0:009

� 0:010 ... �
1 ... 201:203+0:025

� 0:028 6:27 +0:34
� 0:34 0:540+0:049

� 0:045 ... �
1 ... 202:815+0:024

� 0:022 8:27 +0:48
� 0:43 0:562+0:051

� 0:050 ... �
1 ... 214:808+0:044

� 0:041 6:67 +0:46
� 0:43 0:990+0:141

� 0:128 ... �
1 ... 216:593+0:040

� 0:043 4:91 +0:38
� 0:36 0:518+0:078

� 0:083 ... �

1
-1 149:4228+0:0051

� 0:0042 5:411+0:172
� 0:172 0:077+0:002

� 0:002 ...
0.278� 0.010 149:6783+0:0050

� 0:0040 5:311+0:155
� 0:161 0:103+0:003

� 0:004 ...
+1 149:9805+0:0078

� 0:0095 3:891+0:118
� 0:116 0:181+0:006

� 0:006 0.990

1
-1 150:4854+0:0017

� 0:0017 [sinc] 107:36+5:46
� 15:83 0.553

0.157� 0.0050 150:6321+0:0020
� 0:0024 6:429+0:287

� 0:222 0:139+0:005
� 0:004 ...

+1 150:8009+0:0043
� 0:0050 9:702+0:246

� 0:399 0:139+0:005
� 0:004 ...

1 -1 153:5489+0:0010
� 0:0009 [sinc] 138:02+3:39

� 1:88 ...
0.245� 0.0030 153:7943+0:0033

� 0:0034 3:295+0:117
� 0:121 0:081+0:002

� 0:002 1.000

1
-1 159:3792+0:0125

� 0:0125 2:943+0:203
� 0:170 0:083+0:008

� 0:008 0.998
0.23� 0.020 159:6479+0:0056

� 0:0053 3:098+0:126
� 0:114 0:075+0:004

� 0:004 0.986
+1 159:8589+0:0109

� 0:0115 3:891+0:194
� 0:207 0:188+0:016

� 0:022 1.000

1 -1 161:3930+0:0007
� 0:0007 [sinc] 119:15+14:91

� 9:10 ...
0.237� 0.0020 161:6303+0:0029

� 0:0028 5:113+0:189
� 0:220 0:069+0:004

� 0:005 ...

1 -1 163:1311+0:0072
� 0:0068 9:435+0:301

� 0:287 0:169+0:009
� 0:008 ...

0.15� 0.02+1 163:4220+0:0156
� 0:0173 7:429+0:340

� 0:314 0:242+0:031
� 0:028 ...

1 -1 166:0994+0:0054
� 0:0043 3:913+0:327

� 0:325 0:070+0:004
� 0:004 1.000

0.24� 0.009+1 166:5808+0:0080
� 0:0089 3:383+0:142

� 0:129 0:116+0:008
� 0:009 1.000

1 0 170:5549+0:0012
� 0:0017 [sinc] 113:18+0:99

� 1:03 ...
0.254� 0.001+1 170:8090+0:0005

� 0:0005 [sinc] 258:74+33:16
� 20:37 ...

1 0 172:9106+0:0048
� 0:0053 2:905+0:195

� 0:260 0:064+0:003
� 0:003 0.985

0.24� 0.01+1 173:1536+0:0092
� 0:0092 3:015+0:100

� 0:119 0:068+0:003
� 0:003 0.997

1
-1 174:9999+0:0105

� 0:0128 4:601+0:139
� 0:140 0:139+0:008

� 0:007 ...
0.29� 0.010 175:2731+0:0046

� 0:0071 3:892+0:101
� 0:106 0:086+0:006

� 0:009 1.000
+1 175:5968+0:0032

� 0:0036 4:162+0:116
� 0:116 0:052+0:002

� 0:003 ...

Notes. The �rst and second column list the spherical degree and azimuthal orderm of an identi�ed dipole oscillation mode, respectively. For
resolved dipole modes, described through a Lorentzian pro�le, the median centre frequency, the mode amplitude and its full width at half maximum
(FWHM) are given. For unresolved peaks, described through asinc function, the median frequency and the mode height is given. For the case of
peaks with a low S/N-ratio, the detection probabilityP is reported, which ranges between 0 and 1, whereby 1 corresponds to a detection probability
of 100%. In case of rotationally split dipole modes the average separation of them= � 1 modes is given for the individual component frequencies.

Di Mauro et al. (2016) from asteroseismic inversions. This is
di� erent from the �ndings ofBrun & Palacios(2009) in the case
of a lower-mass upper RGB star, where they showed from three-
dimensional global non-linear simulations that, for very low ro-
tation rates, shellular radial di� erential rotation is expected with

a low latitudinal dependence. It is however in fair agreement with
similar 3-D simulations of the star Pollux byPalacios & Brun
(2014), which resembles more the primary of KIC9165796, and
for which they obtain a 40% radial contrast between core and en-
velope ratio. As a consequence the still unknown physical pro-
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Fig. 9. The evolutionary track of representative models of the red-giant
stars with [M/H] = -0.37 star in theTe� -logg plane. The black solid and
red dotted lines represent the evolution of a 1.39 M� star computed as-
suming a grey atmosphere or a �t to realistic PHOENIX model atmo-
spheres as an outer boundary condition to the stellar structure equations,
respectively. The grey dashed line is also computed with PHOENIX at-
mospheres and assuming a reduced mass of 1.18 M� . The positions of
the primary and the secondary components of KIC 9163796 along this
evolutionary track from spectroscopic parameters are marked in blue
and red, respectively.

cess that decelerates the core of red giants during stellar evo-
lution is likely to act in the radiative zone or at the transition
regions between the core and the outer convective envelope of
subgiants and red giants.

7. Lithium abundance & Rotational mixing

The binary system of KIC 9163796 provides a highly con-
strained set of stars, with all spectroscopic fundamental param-
eters well known, both stars located at the same distance from
the observer and the same primordial metallicity. As shown by
Lagarde et al.(2015), that the initial conditions of the rotation
rate of stars on the main sequence is a critical parameter andgov-
erns the Li abundance in the more advanced stages. Not knowing
the initial conditions is complicating the analysis. By having two
nearly equal mass stars, born and evolved under the same condi-
tions, we can ignore these di� erences in the rotation history. As
discussed in Section4, an A(Li) of 1.31� 0.08 and 2.55� 0.07dex
as well as a di� erence of about 600 K was found between the pri-
mary and the secondary component, respectively (also see Ta-
ble4 and Figure5). Although the mass of a star cannot be de-
termined with better precision than a few percent, an accurate
estimate of theratio in massis provided from the ratio of radial
velocity amplitudes. This allows us to study the history of the
system, based on the di� erences in abundances of lithium.

Representative models were calculated for stars in the mass
range of 1.36 M� to 1.41 M� at a metallicity of Z= 0.005869 cor-
responding to [Fe/H] = -0.37dex when using theAsplund et al.
(2009) solar abundances as a reference. These models are
computed with the latest version of thestarevol code (see
Amard et al. 2016). The impact of rotation on the e� ective grav-
ity is accounted for following the formalism byEndal & So�a
(1978), and the transport of angular momentum and chemicals
is treated using theMaeder & Zahn(1998) andMathis & Zahn

Fig. 10.Kippenhahn-like diagram in mass for the representative model
of KIC 9163796. The shaded areas represent convective regions, and the
green dashed lines mark out the H burning shell. The internalstructure
of the primary and secondary is indicated in this diagram using the same
symbols as in Fig.9.

(2004) formalisms with theMathis et al.(2004) prescription for
the horizontal viscosity, extensively described inAmard et al.
(2016). The mass loss is accounted for beyond the main se-
quence using the Reimer's formula with� R = 0.5. The nuclear
reaction rates for the pp-chains and CNO cycle have been up-
dated using the NACRE II compilation (Xu et al. 2013).

The non-rotating evolutionary tracks of components in the
Te� -logg plane as well as the corresponding Kippenhahn dia-
gram are depicted in Figure9 and 10, respectively. These are
representative of all our models, including the rotating ones, be-
cause the slow rotation does not noticeably modify the stellar
structure and evolution in our models. Because the mass used
for the models come from scaling relations, we check if the
position of the stars is compatible with the main seismic mass
as well as with the mass corrected for the 15% mass reduc-
tion as proposed byGaulme et al.(2016). Figure 11 shows three
evolutionary tracks: the solid black line is our standard model,
computed assuming a grey atmosphere as outer boundary con-
dition to the stellar structure equations. The red dotted and grey
dashed lines represent a 1.39 M� and a 1.18 M� model respec-
tively, computing assuming a more realistic outer boundarycon-
dition. These two masses correspond to the original stellarmass
and the value, reduced by the proposed 15%. For these models,
the thermal structure of the uppermost shells is �tted to a grid
of detailed PHOENIX model atmospheres (Allard et al. 2001,
2012) in order to retrieve realisticTe� and logg values. The sec-
ondary is well �tted by both models of 1.39 M� assuming ei-
ther grey or realistic PHOENIX atmosphere, while the agree-
ment with the primary is less good. For the primary, the 1.18 M�
model with PHOENIX atmosphere achieves a better �t but it
shows a worse �t of the secondary. Judged from the stellar mass
and the models, the main-sequence progenitors of the red giants
in KIC 9163796 were late F-type stars and the best model �ts for
an age of about 2.7 Gyr. With a mass of� 1.4 M� , the progeni-
tor stars were located on the blue, hotter edge of the so called
Li-dip on the main sequence (Wallerstein et al. 1965; Boesgaard
1987; Talon & Charbonnel 1998). In these stars, the microscopic
settling of chemical elements is counter acted by macroscopic
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Fig. 11. Surface lithium abundance for the representative model of
KIC 9163796, with di� erent scenarios of rotation history as function of
the stellar e� ective temperature. The primary and secondary are marked
as dot and diamond respectively. The solid (black) line represent the
non-rotating model and the solid-body rotating ones, the dotted (red)
line represents a di� erentially rotating model with very e� cient turbu-
lent mixing (� h prescription fromZahn 1992), the short-dashed (green)
line represents a similar model using a di� erent prescription for tur-
bulent shear (� h prescription fromMathis et al. 2004), the long-dashed
(blue) line represents a model similar to the previous one but slowly
rotating on the ZAMS and the dashed-dotted (cyan) line represents a
model computed assuming solid-body rotation on the main sequence
and di� erential rotation beyond the TAMS. The two components of
KIC 9163796 are shown using the same symbols as in previous �gures.

e� ects and therefore, the measured abundance is typically close
to the cosmic A(Li), known from the analysis from meteorites
(Talon & Charbonnel 1998; Castro et al. 2016). However, it was
shown byGuiglion et al.(2016) the initial Li abundance should
be lower than the 3.3 dex for the solar value for lower stellar
metallicity. We therefore assume an initial A(Li) for the main
sequence-progenitor stars of 2.7 dex, which is a typical value for
low-metallicity stars .

Because tidal interaction alternates the angular momentum
transport inside stars,Zahn(1994) showed that synchronised bi-
nary systems have substantially di� ering lithium abundances.
However, the system of KIC 9163796 is wide, suggesting that
tidal interaction has only started recently and, as described in
the following section, is in fact weak. Therefore, we can treat
KIC 9163796 as a system where tidal induced transport of an-
gular moment and chemical species plays no signi�cant role in
the previous rotation and activity history of the system andthe
alternation of the A(Li)-evolution can be ignored.

As it can be seen from the Kippenhahn-diagram in Fig-
ure10, the secondary and the primary component are in the
early and late phase of the FDU phase on the RGB, respectively.
Therefore, the components of KIC 9163796 are framing the �rst-
dredge-up event. Since lithium is consumed through thermonu-
clear reactions in the stellar interior at temperatures above � 3
million Kelvin, its surface abundance is a strong tracer of mix-
ing processes, rotation and loss of angular momentum insidea
star. This makes it an interesting system in the context of stel-
lar evolution as we can assume that the observed di� erence in
surface Li abundance between the two stellar components, de-
scribed in Section4 and Table4, is solely governed by the dif-

ference in mass. Therefore, also the di� erence in the stellar evo-
lution relates directly to the di� erence in mass between the two
components.

Motivated by the need to �t the Li surface abundance of the
two stars in the system, we tested various descriptions of the ro-
tational history. Starting with a typical initial lithium abundance
expected for the metallicity of KIC 9163796, we look for the
rotational history that could best explain the determined A(Li)
in both components. The models discussed below are depicted
in Figure11. We note that all scenarios lead to a basic agree-
ment with the observed surface rotation velocity estimatedfrom
the spot modulation but vary drastically in the internal rotational
gradient.

The �rst, simpli�ed approach of assuming (e.g.
Talon & Zahn 1997) solid-body rotation ensures no trans-
port of chemicals by the vertical turbulent shear instability
since the e� ciency of this instability entirely depends on the
angular velocity gradient. This approach produces a good
agreement with the spectroscopic Li abundances (Figure11,
black solid line), which is fully compatible with standard
models �rst dredge-up dilution, thus indicating that lithium has
been preserved from destruction via additional transport pro-
cesses during the main-sequence evolution, such as anisotropic
turbulent transport (Mathis et al. 2017 submitted), internal
gravity waves (Talon & Charbonnel 2005) or magnetic �elds
(Strugarek et al. 2011). The presence of rotationally split dipole
modes found in the power spectrum of the primary component,
analysed in Section6 however provides �rm evidence that
the star is now rotating non-rigidly, with the typical rotation
gradient, found in other �eld and binary stars (see discussion in
Section6). This may induce that the internal transport of angular
momentum induced by tidal waves (e.g.Goldreich & Nicholson
1989; Talon & Kumar 1998; Mathis & Remus 2013) is weak in
comparison with other transport mechanisms. Therefore, several
scenarios of non-rigid rotation were investigated.

Allowing the rotational gradient in the models to evolve
freely, we obtain a huge rotational gradient of a core-to-surface
rotation rate ratio of 800, which is by far too steep when com-
pared to the observational results, suggesting a factor of 10 for
stars at the low luminosity edge of the RGB. Also, the evo-
lution of the lithium abundance in Figure11 (red dotted and
green dashed line) strongly indicates that fast non-rigid rota-
tion throughout all phase of KIC 9163796 can be excluded. In
models experiencing non-rigid rotation during their entire evo-
lution, the surface lithium abundance is decreased during the
main-sequence evolution due to the vertical turbulent shear insta-
bility, and it is not possible to reconcile the predicted abundances
with the ones derived from high resolution spectra. In an addi-
tional test scenario, the solid-body rotation hypothesis was only
forced on the model during the main sequence (cyan dashed-
dotted line). This is justi�ed, following the indications given
by helio- and asteroseismology that low-mass and intermedi-
ate stars could be solid-body rotators on the main sequence (e.g.
Kurtz et al. 2014; Benomar et al. 2015; Murphy et al. 2016). In
this case, the rotational mixing that develops beyond the Ter-
minating Age Main Sequence (TAMS) in the radiative interior
leads to a decrease of the surface lithium abundance prior to
the FDU, and the predicted A(Li) for the secondary is smaller
than the observed one. On the other hand, the surface lithium
abundance is fully controlled by the deepening of the convective
envelope once the FDU starts and the model prediction is fully
compatible with the A(Li) of the primary.

Therefore, the lithium abundance of the primary is best com-
patible with the scenarios of rigid rotation throughout theentire
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evolution. This �nding is independent of the chosen mass forthe
two stars. In both cases (1.39 and 1.18 M� ), the Li abundance is
consistent with predictions of standard stellar evolutionor solid-
body rotation in the radiative region. Rigid rotation in this phase
however is quite unusual for stars of this mass and evolution-
ary status, as also typical sub-giant progenitors of KIC 9163796
appear to be rotating non-rigidly in the Hertzsprung gap (e.g.
Canto Martins et al. 2011; Deheuvels et al. 2014). However, the
gradient between the core and surface rotation was found to be
low. It deviates by one to two orders of magnitude from the ro-
tational gradient predicted by the di� erentially rotating mod-
els computed here (Palacios et al. 2006; Marques et al. 2013;
Ceillier et al. 2013). Such a small rotational gradient would be
accompanied by weak shear and the expected e� ect on the sur-
face lithium abundance would be negligible, so that such a small
core to surface rotation gradient should be compatible withthe
predictions of the rigid case scenario depicted in Figure11.

8. Stellar activity in context

A modulation of the stellar activity could be expected due to
several intrinsic or causes, such as tidal interaction or tospots.
The latter was found for EK Eri byStrassmeier et al.(1999).

The signature of spots, shown in Figure1 indicates that at
least one component of the binary system is very active. An-
other well known indicator of stellar, chromospheric activity is
the emission in the cores of the Caii H&K lines in the near ul-
tra violet (394 and 393nm, respectively). A visual inspection of
Hermesspectra of red giants in binaries, observed withKepler
(BHV14) or giants in the Hyades, shows that KIC 9163796 has
by far the strongest emission in those lines among this sample.
Figure12 compares the emission at the core of the Ca K-line in
the average spectrum KIC 9163796 to the strength of this emis-
sion in two Hyades giants� 1 Tau and� Tau, which exhibit typical
red-giant activity.

8.1. Chromospheric activity

The classical way of exploiting information on the chromo-
spheric activity contained in these Ca lines is the Mount Wil-
son Observatory (MWO)S-index (Duncan et al. 1991, and
references therein). The multiplicative factor to scale from
the instrumentalS-index, measured in red-giant stars to meet
the MWO-reference frame was determined to be 18.9 by
Beck et al.(2017c), from comparison of the measuredS for
� 1 Tau (=77 Tau) byAurière et al.(2015) and Hermesobserva-
tions. When calculating theS-index of the individual frames,
corrected for the individual radial velocity, a clear modulation
with the orbital phase is found, with a peak during the periastron
passage. This is an artefact of the formalism of theS-index due
to the changing fractional light contribution in the centreof the
0.109 nm wide triangular windows, centred on the cores of theH
and K line and the alternated number of lines in the normalising
windows. MeasuringS in an SB2-system will always lead to an
underestimation as a function of the fractional light.

To test if both stellar components of the system show signs of
chromospheric activity, we inspected the four observations dur-
ing periastron, when the di� erence in RV is larger than 50 km/s.
In those observations, the signature of emission is moving in
phase with the spectrum of the primary component. We there-
fore argue that the most active component is the primary. From
these four spectra, we measure anS-index of 0.219, which trans-
lates into anS ' 0.36 through the correction for the di� eren-
tial light contribution. Such value is in good agreement with the
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Fig. 12. The emission in the Ca K line in the median spectrum of the
primary of KIC 9163796 (red), compared to the emission of theHyades
giants� 1 Tau (middle curve, blue) and� Tauri (bottom curve, grey).

S-index of stars with detected Zeeman-splittings.Aurière et al.
(2015) report that rather strong values (S &0.2) were found for
most magnetically active stars, while stars with non-detections
are typically found below this value.

Comparing KIC 9163796 with the sample of active stars in
single red-giant stars and those in wide binaries in theS-Prot
plane (Fig. 9 inAurière et al. 2015), we �nd that this system is
above the �t they present to their sample but note, that thereis
a large scatter. One of the stars closest to KIC 9163796 in terms
of rotational period is the secondary clump primary in the wide
binary system of� 1 Tau (Prot' 140 days, also Figure12) which
varies between 0.16. S . 0.2. over the campaign ofAurière et al.
(2015). Beck et al. (in prep) con�rms similar variations. Given
the large scatter in theS-index of active stars, which can also
be modulated by long term activity cycles (Saar & Brandenburg
1999) we �nd that KIC 9163796 is an active red giant. Further-
more, we can compare KIC 9163796 also via the Rossby num-
ber,RO, describing the ratio between theobservedrotation pe-
riod and the maximum convective turnover timescale within the
convective envelope. Based on the models, presented in Sec-
tion7, we calculated theRO for both component, following the
semi-emperical de�nition used byAurière et al.(2015). Because
the rotation rate of the secondary component cannot be gauged
either from the light curve nor from the unresolved rotational
broadening in spectroscopy, we used the surface rotation ofthe
rigidly rotating model to calculateRO for both components. The
rotation period of this model su� ciently reproduces the sur-
face rotation rate found for the primary from theKepler light
curve (Tab.2 & Fig.1). For the primary and secondary we obtain
RO;1=2.63 andRO;2=0.74, respectively.

The majority of red-giant stars with detected magnetic sig-
natures are found either at the beginning of core-He burning
or in the �rst dredge-up phase (Aurière et al. 2015). A theo-
retical interpretation for this behaviour has been proposed by
Charbonnel et al.(2017) in the frame work of convective dy-
namos. KIC 9163796 is located in this strip of magnetic activ-
ity. Therefore, we can use the relation between the measuredS-
index and the large scale unsigned longitudinal magnetic �eld
jBljmax, depicted in Figure 10 ofAurière et al.(2015), 0.3< S
< 0.4 would indicate a magnetic �eld strength 5. jBljmax. 8 G.
Using the Rossby number instead of theS-index leads to similar
results. For the primary and secondary we �nd� 4 G and� 7G
for . jBl jmax, respectively. Given the large scatter and unknown
systematics in the measurements of the large scale unsignedlon-
gitudinal magnetic �eld, the two methods are in good agreement.
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Fig. 13. Total oscillation amplitudesA puls for the extended sample of
red giants (Kallinger et al. 2014), with their seismic mass colour-coded.
The bulk of red dots on the left hand side mark secondary-clump stars.
The measured and intrinsic amplitude of the primary component of
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framed diamond symbol, respectively.

8.2. Effect of activity on the oscillation amplitude

To test if the interaction of the two stellar components in
KIC 9163796 has an overall in�uence on the oscillation am-
plitude, we compare in Figure13 the amplitude of the primary
to those of a large sample of red giants observed withKepler
(Kallinger et al. 2014). We �nd that the corrected amplitude
A puls;1 is slightly lower (by about 20%) than what is expected
for a 1.4 M� star, but it is not an extreme outlier.

Furthermore, we tested wether the overall oscillation ampli-
tude is modulated by the orbital phase. From the full light curve,
which was folded into a phase diagram, we described the �ux
modulation at periastron with a high-order Legendre-polynomial
�t. When using the polynomial �t, to remove the �ux modulation
through normalisation, the residual �ux does not show any sig-
ni�cant amplitude modulation a as function of the orbital phase.
We therefore conclude that the tidal interaction has no immedi-
ate e� ects on the mode parameters, but will act throughout all
phases of the orbit.

8.3. Effect of activity on the mode linewidth

The oscillation amplitude depends on numerous factors and is
subject to the constant interaction between the driving anddamp-
ing mechanisms (e.g.Belkacem & Samadi 2013). From the anal-
ysis of activity in eclipsing binary stars,Gaulme et al.(2014)
suggested that such e� ects lead to additional damping of solar-
like oscillations. From the precise measurements of the mode pa-
rameters, we can now test the in�uence of activity on the mode
parameters

Unlike the mode amplitude, the full width at half maximum
of a mode,� , is independent of photometric dilution. Therefore,
the measured values of� in KIC 9163796 can be directly com-
pared to the typical values of the mode width in larger samples
of stars. In this analysis, we only compare the width of radial
modes, as̀ = 2 might be a� ected by rotation and the presence of
quadrupole mixed modes, which would lead to an overestimate.
Corsaro et al.(2015) have performed a detailed analysis of the
individual mode parameters in 19 red-giant stars, observedby
Keplerfor more than 4 years. For the e� ective temperature of the
primary component of about 5000 K (see Table4), they report an

average value for� ` = 0' 0.1� Hz. In KIC 9163796, we measure
much broader peaks. From the six radial modes that we mea-
sure (see Table7), we �nd an average of� = 0.4� 0.2� Hz. Such
a broad mode width can only be explained due to strong damp-
ing, as expected for active stars as it is the case for KIC 9163796
from spots (Figure1) and chromospheric activity (Figure12).

9. Tidal interaction

In eccentric close binary systems such as KIC 9163796, tidal
interactions modify the orbits of the stars and their rotation.
The pace of the evolution towards an equilibrium state where
the orbits are circularised and the rotational and orbital spins
are aligned and synchronised is determined by the distance be-
tween the two stellar components, their mass and radius, and
the strength of the dissipative processes applied on tidal �ows in
their interiors (e.g.Zahn 1989; Mathis & Remus 2013). In red
giant stars, tidal �ows are constituted by the large-scale equilib-
rium tide (Zahn 1966; Remus et al. 2012), generated by the el-
lipsoidal hydrostatic adjustment of the star because of thepres-
ence of the companion, and the dynamical tide, i.e. tidal iner-
tial waves propagating in their large convective envelope when
Porb > 1=2Pstar and tidal gravity waves propagating in their sta-
bly strati�ed radiative core (Zahn 1975; Ogilvie & Lin 2007).
We recall here that inertial waves have the Coriolis accelera-
tion as a restoring force. For stars with large convective en-
velopes like red giant stars, turbulent friction applied bycon-
vection on tidal �ows is the main dissipation process that con-
verts their kinetic energy into heat (Zahn 1966; Ogilvie & Lin
2007; Auclair Desrotour et al. 2015). In stellar radiation zones,
radiative damping acting on tidal gravity waves is the dominant
mechanism (Zahn 1975; Auclair Desrotour et al. 2015). Having
good representative stellar models of the primary and secondary
(see Figure10) allows us to discuss the dissipation of tidal en-
ergy in the system studied here to understand its orbital state and
explore which tidal wave can potentially be detected.

9.1. Equilibrium tide and circularisation state

The observed modulation of the brightness of heartbeat stars is
caused by the distorted stellar shape associated to the equilib-
rium tide (for a more extensive description of the observational
aspects of tides in red-giant binary systems we refer the reader to
Beck et al. 2017b). Moreover,Gallet et al.(2017) demonstrated
that the dissipation of tidal inertial waves in the deep convective
envelope of red giant stars is weak. Indeed,Beck et al.(2017a)
have shown from an ensemble study of red-giant binary systems,
observed withKepler, that the contribution of the time dependent
component of tidal interaction to the full budget of dissipation is
negligible for all systems. Therefore, we focus here on the dissi-
pation of the equilibrium tide by the turbulent friction in the deep
convective envelope to understand the observed non-circularised
state of the system.

In this framework,Verbunt & Phinney(1995) developed a
formalism to predict the expected circularisation state inred
giant binary stars based on the theory derived inZahn (1966,
1989). They obtained the rate of circularisation of a system for
evolving red giant stars as the KIC 9163796 system

� ln e
f

= � 1:7�10� 5
 

M
M�

! � 11=3

q� 1
�
1 + q� 1

� � 5=3
I (t)

 
Porb
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! � 16=3

:
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In this expressione is the orbital eccentricity,M the mass of
the primary,q the mass ratio wherem is the mass of the sec-
ondary, andPorb the orbital period. The circularisation strength
I (t), wheret is the time, is a monotonic function of the stellar ra-
dius andf is a dimensionless parameter of order unity that quan-
ti�es the details of the convective tidal turbulent friction applied
on the equilibrium tide. We see from the Kippenhahn diagram
reported in Figure10, that only the primary is nearly fully con-
vective. The dissipation of the equilibrium tide dependingon the
thickness of the convective envelope, we therefore assume that
the primary is likely to be the main seat of tidal dissipationin the
KIC 9163796 system.

Following this formalism, we have computed the expected
reduction of the orbital eccentricity, based on the stellarparam-
eters of the primary star deduced from seismology. From the
analysis of their sample,Verbunt & Phinney(1995) concluded
that binary systems with a value of� ln e

f &3 should be quasi-

circularised. For KIC 9163796, we �nd� ln e
f ' 10� 3:3. Therefore,

the pace of the circularisation is currently slow with a low
level of dissipation of tidal kinetic energy. Therefore, the sys-
tem is not expected to be circularised yet as observed with the
eccentric orbit. This �nding is in good agreement with sys-
tems in the sample ofVerbunt & Phinney(1995) with similar
eccentricities. A slightly stronger tidal dissipation is found in
KIC 5006817 with� ln e

f ' 10� 2:9. This system has nearly the same
eccentricity and the orbital period is only 30 days shorter than
KIC 9163796 while its primary component have similar mass
and radius. The main di� erence of KIC 5006817 with the system
discussed in this work is the mass ratio, which was determined
by BHV14 to be 1/5.

From this comparison, it was found that both systems are
thus far from circularisation. The huge spread of eccentricity in
the sample ofVerbunt & Phinney(1995) indicates that, at such
low values of � ln e

f . 10� 2, circularisation and synchronisation
are determined by the previous history of the systems. The low
values of � ln e

f indicate that the evolution of the systems studied
here is currently dominated by the time scales of stellar evolu-
tion, as the stars ascend the RGB, until the separation between
the two components is getting small enough to allow stronger
tidal forces to act.

9.2. Search for the dynamical tide

In numerous eccentric binary systems with main-sequence
components, low-frequency oscillations, that are not excited
through opacity variations (i.e. by the� -mechanism, e.g.
Kippenhahn et al. 2013) but by tidal interactions were found
(e.g.Welsh et al. 2011; Thompson et al. 2012; Hambleton et al.
2013). Their frequencies are in resonance with the orbital pe-
riod and the modes correspond to the dynamical tide intro-
duced above. In red giant stars, the two families of candi-
dates are tidal gravity waves propagating in the radiative core
and tidal inertial waves propagating in the convective envelope.
As in the case of main-sequence solar-type stars, tidal gravity
waves would be di� cult to detect because of their screening
by the convective envelope (except if they are mixed gravito-
acoustic modes,Appourchaux et al. 2010). Therefore, in the case
of KIC 9163796, we focus on tidal inertial waves that can be ex-
cited whenPorb > 1/2� Pstar and propagate in the convective en-
velopes of the components.

To guide the search for tidal inertial modes in the low-
frequency regime of the power spectrum of KIC 9163796, we
computed the PSD of a synthetic light curve (Figure14 , also

Fig. 14.Comparison of PSD from synthetic light curve without oscilla-
tion and the spot-free light curve in red and black, respectively. The ver-
tical line indicates the frequency corresponding to twice the rotational
frequency,
 star.

see Section8.2). Analysing a detrended light curve is problem-
atic as imperfections of the detrending routine lead to sidepeaks
that mimic these frequencies. Therefore, the high-order Legen-
dre polynomial �t of the �ux modulation, described in the pre-
ceding subsection, was used to construct a synthetic light curve
of the pure ellipsoidal modulation. The vertical line in Figure14
indicates the frequency corresponding to twice the stellarrota-
tion frequency
 starOnly signal below this value could originate
from tidal inertial modes. The two highest peaks in the real spec-
trum (black spectrum in Figure14) with frequencies below this
frequency limit correspond tof1 and f2 of the spot modulation.

The non-detection of tidally induced modes does not mean
that they do not exist in systems like KIC 9163796. To reach a
detectable signal, these modes would however need to produce
large photometric signals in order to compete with the high-level
of the granulation background (see Figure14), typical for solar-
like oscillators in advanced stellar evolution. Because RVob-
tained through high-resolution spectroscopy are less a� ected by
the convective signal and the heartbeat event, a high-quality time
series of radial velocity measurements might be better suited for
the search of the signature of the dynamical tide, i.e. tidaliner-
tial and gravity waves, in both components in the case of well
separated SB2 systems.

10. Summary & Conclusions

In this work we have combined combined space photometry,
ground-based high-resolution spectroscopy, and a seismicanaly-
sis, as well as theoretical modelling to study the eccentricbinary
system, KIC 9163796. From the solution of the spectral disen-
tangling of both components, we �nd that the mass ratio between
both components is 1.015� 0.005. Therefore, we know the mass
ratio between the two components by far better than the stellar
mass of the primary alone which� 1.4 M� from asteroseismol-
ogy. The temperature di� erence between the two components of
� 600K places the secondary and the primary into the early and
late phase of the �rst dredge-up event at the bottom of the RGB.

The main seismic analysis focused on the power excess orig-
inating from the primary component. By comparing the oscilla-
tion spectrum to the spectrum of a comparison star with simi-
lar values of� max and� � , an unambiguous mode identi�cation
could be achieved. Furthermore, we identify the power excess of
the secondary. This detection support this by reconstructing the
expected� secondary

max by using only spectroscopic inputs from the
spectral disentangling solution.
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In fair agreement with three -dimensional numerical MHD
simulations of a slow rotating low-mass star at the base of the
RGB by (Palacios & Brun 2014, and Palacios private commu-
nication), we show that there is no clear signature of di� erential
surface rotation in the light curve. The main variation of the light
curve could originate from the varying activity of two largeac-
tive regions. From the analysis of the rotationally split modes
in the oscillation spectrum of the primary, the rotational gradi-
ent between the core and the surface could be determined to be
6:9+2:0

� 1:0. The value of the seismically determined rotation gradi-
ent in the radial direction is compatible within the error bars with
the value of the rotational gradient estimated by using the sur-
face rotation rate from photometry (6:3+0:7

� 0:6). This strongly sug-
gests that the rotational gradient inside the convective envelope
is �at or even rigid. Such �at rotational gradient in the convec-
tive envelope of a red-giant branch star shows the validity of the
usually chosen two-zone model for straight-forward testings. It
also con�rms the �ndings ofDi Mauro et al.(2016), who were
not able to detect a variation of the rotational gradient inside the
convective envelope but accounted this to the very limited radial
resolution of the rotational kernels in the convective envelope.
The core-to-surface rotation gradient is compatible to single �eld
stars, which could indicate that the angular momentum transport
through tides is negligible in such systems. As a consequence the
still unknown physical process that decelerates the core during
stellar evolution is likely to act in the transition region between
the core and radiative inner envelope of subgiants and red gi-
ants, such as internal gravity waves (Talon & Charbonnel 2008).
A �at rotational gradient also allows a simpli�ed treatmentof
the propagation of the dynamical tide in stars, such as inertial
waves.Guenel et al.(2016) has shown that di� erential rotation
is imposing strong selection e� ects on the possible propagation
paths. In this context, although we see power in the PSD which
could originating from the inertial waves propagating in the con-
vective envelope, we cannot rule out that this is an e� ect of the
segmentation of theKeplerdata.

Such a well-constrained binary system allows us to study
the interactions between the two stellar components. Besides the
surface rotation, we measure in the optical spectrum a high level
of chromospheric activity. Also the line width of the oscilla-
tion modes is indicating a much stronger damping than found in
other red giants in the same range of e� ective temperature. This
could be related to magnetic �elds induced through the strong
interaction at periastron. However, no immediate e� ect on the
measured overall oscillation amplitude was found as a function
of the orbital phase. Additionally, we studied the tidal interac-
tions in the system. We con�rm the result ofVerbunt & Phinney
(1995), that the dissipation of tidal energy is low in systems with
low-luminosity red-giant components. No low-frequent modes,
induced by the dynamical tide were found. Judged by the di-
mension of the convective envelope and the strati�cation ofthe
stellar structure, the amplitude of these modes is expectedto be
minor, compared to the dominant granulation noise of the pri-
mary. Therefore, the observed �ux modulation are the sole e� ect
of the equilibrium tide.

From the disentangled spectra of both stellar components, we
�nd that the abundance of the fragile element lithium is di� ering
by 1.2 dex between the components, while the overall metallicity
is the same for both components. From comparison of the pre-
dicted lithium value from rotating and non-rotating models, we
�nd that the measured lithium abundance in both components is
compatible with a rigid rotating along stellar evolution. It can
be argued that this scenario is justi�ed by the low level of the
rotational gradient, found from the asteroseismic analysis.

KIC 9163796 thus provides us with a unique and impressive
example on how strong the e� ect of a di� erence in mass of
about 1-2% can be on stellar evolution and consequently in
lithium abundance. This system in particular allows us to study
a binary system, whose components are in the early and late
stages of the �rst dredge-up event� one of the most interesting
evolutionary phases in red-giant star evolution. Binary systems
like KIC 9163796 provide a robust and well tested benchmark
for testing seismic scaling relations with observations aswell as
confronting models of chemical mixing and angular momentum
transport. In last consequence, binary systems like KIC 9163796
will allow us to improve the determination of stellar ages.
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