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ABSTRACT

Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last
decade calls for investigations to further understand the internal structures of these stars.
Aims. The aim of this work is to validate a method to measure the underlying period spacing, coupling term and mode offset of
pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the
evanescent zone between the gravity mode cavity and the pressure mode cavity.
Methods. We implement an alternative mathematical description, compared to what is used in the literature, to analyse observational
data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial
order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method
allows us to constrain the gravity mode offset ǫg for red-giant stars.
Results. We find that this alternative mathematical description allows us to determine the period spacing ∆Π and the coupling term
q for the dipole modes within a few percent of literature values. Additionally, we find that ǫg varies on a star by star basis and should
not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the
evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of
the core of red giant branch models shows a tentative correlation with the offset ǫg.
Conclusions. We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant
stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and
models with great care as the methods employed are sensitive to the range of input frequencies.
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1. Introduction

The long near-uninterrupted high-precision photometric time-
series data from the CoRoT and Kepler space missions now al-
low for the investigation of the internal structures of stars. One
of these structure features in red-giant stars is the evanescent
zone between the cavity in which oscillations are present with
buoyancy as restoring force (g-mode cavity) and the cavity in
which pressure is the restoring force (p-mode cavity). The loca-
tion, shape and width of this evanescent zone may all play a role
in the coupling between these cavities and the characteristics of
the observed dipole modes (modes with degree l = 1), which
have a mixed pressure-gravity nature (Takata 2016a,b; Mosser
et al. 2017). We note here that generally the dipole modes rather
than quadrupole modes (modes with degree l = 2) are used to
investigate the interior conditions in stars. This is due to the fact
that 1) the coupling is weaker at higher degrees leading to very
small amplitudes of the modes with a significant g component
and 2) the spacing between the mixed components reduces as a
function of degree making quadrupole mixed modes and their pe-
riod spacings harder to resolve. In the remainder of the paper we
discus dipole modes, in all cases where no degree is indicated.

The underlying characteristics of the gravity part of the
mixed modes are the asymptotic period spacing (∆Π), the cou-

pling factor (q) and an offset (ǫg). The asymptotic period spacing
is the period spacing between pure gravity modes (g modes) in
the limit where the degree of the mode is much lower than the ra-
dial order n (i.e. l << n). The spacings in period between individ-
ual mixed modes is in theory always smaller than the asymptotic
value due to the coupling with a pressure mode. The coupling
factor provides insight into the strength of the coupling between
the g-mode cavity and the p-mode cavity, with q = 0 for no cou-
pling and q = 1 indicating maximum coupling. The parameter
ǫg is a phase term accounting for the behaviour near the turning
points of modes (e.g. Hekker & Christensen-Dalsgaard 2017).

Various approaches have been employed to determine the pa-
rameters of the mixed modes. For a subset of known red giants,
Bedding et al. (2011) derived the most prominent period spacing
by taking the power spectrum of the power spectrum for dipole
modes, where the mode frequencies were expressed in period
and the amplitude of the power spectrum was set to zero in re-
gions not containing l = 1 modes. Using this period spacing they
presented period-échelle diagrams. In such diagrams frequency
(ν) is shown as a function of period (Π) modulo period spacing
(∆Π), see e.g. panel E of Fig. 1. The frequencies of the mixed
modes in consecutive acoustic radial orders are stacked on top
of each other and show a typical "S-shape". The value of ǫg de-
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termines the absolute position of the "S-shape" pattern in the
period-échelle diagram, while q determines the steepness of the
central segments; a shallow transition in the case of strong cou-
pling and a steep transition in the case of weak coupling.

Mosser et al. (2012b) presented the asymptotic expansion for
the frequencies (ν) of mixed modes based on Unno et al. (1989):

ν = νnp ,l +
∆ν

π
arctan

[

q tanπ

(

1

∆Πlν
− ǫg

)]

, (1)

where νnp,l is the frequency of the pressure mode (with radial
order np and degree l) with which the gravity modes are cou-
pled, ∆Πl is the asymptotic period spacing of modes with degree
l, and ∆ν is the large frequency separation between modes of
the same degree and consecutive radial orders of acoustic modes.
One commonly adopted assumption is to take ǫg as a fixed value,
either zero or one half depending on the definitions used. By
fixing ǫg it is possible to determine the period spacing and cou-
pling strength in an iterative manner. This formulation has suc-
cessfully been applied in many cases (e.g., Mosser et al. 2014;
Buysschaert et al. 2016). In fact, Buysschaert et al. (2016) were
the first to leave ǫg as a free parameter in Eq. 1 and concluded
that this enables a more robust analysis of both the asymptotic pe-
riod spacing and the coupling factor. However, their method left
ǫg ill-defined with a large confidence interval (e.g. Buysschaert
et al. 2016).

Datta et al. (2015) developed an automated way to find the
optimal value of ∆Πl by measuring the alignment of the "S-
shape" and the symmetry in the period-échelle diagram, i.e. im-
plicitly assuming a fixed value for ǫg. Furthermore, to extract re-
liable period spacings they used a Monte Carlo approach, i.e., pe-
riod spacings were computed for 10 000 realisations of the data,
for which the frequencies were randomly perturbed within their
uncertainties. The distribution of the ∆Πl results of each pertur-
bation could then be used to compute a value with uncertainties
for each discrete solution of ∆Πl as well as the probability of
the solution. Hence, in this analysis multiple results of the pe-
riod spacing for a particular star with their probabilities were
presented.

Following this, Mosser et al. (2015) realised that the ob-
served and asymptotic period spacings can be related through
the ratio (ζ) between the kinetic energy in the radiative cavity
and the total kinetic energy (e.g. Goupil et al. 2013; Deheuvels
et al. 2015). This relation allowed Mosser et al. (2015) to use ζ to
compute stretched periods of mixed modes, where the modes in
the stretched period-échelle diagram line up along vertical ridges.
Vrard et al. (2016) used this concept to develop an automated
tool to compute gravity period spacings for over 6 100 red gi-
ants observed with the Kepler telescope. This method using ζ is
particularly powerful as it requires only an approximate determi-
nation of ∆ν, ∆Π1, and the frequency position of the dipole pres-
sure modes. Moreover, this method is applied to the full power
spectrum and does not require knowledge of frequencies of indi-
vidual modes.

Mosser et al. (2017) subsequently investigated the coupling
factors, i.e. q, of thousands of red giants with the intent to pro-
vide physical constraints on the regions surrounding the radiative
core and the hydrogen-burning shell. They found that weak cou-
pling is present in only the most evolved stars on the red-giant
branch. Larger coupling factors are measured at the transition
between subgiants and giants as well as in core helium burning
(CHeB) stars.

An alternative mathematical description that is consistent
with Eq. 1 has been proposed by Christensen-Dalsgaard (2012),

and developed further by Jiang & Christensen-Dalsgaard (2014)
Cunha et al. (2015) and Hekker & Christensen-Dalsgaard (2017)
to compute the theoretical frequencies of mixed modes. This for-
malism has so far been used to compute frequencies of mixed
dipole modes for models. Here, we investigate the performance
of this formalism in determining ∆Π, q and ǫg when applied to
observed data. This method explicitly uses frequencies as well as
the value of the radial order of mixed modes and has the advan-
tage that it can be applied to models (with frequencies computed
in an independent way) as well as to observational data. This al-
lows us to investigate 1) how close the period spacings computed
from individual mixed-mode frequencies and from the integral
of the Brunt-Väisälä frequency are; 2) the physical conditions of
the evanescent zone connected with the coupling term. Addition-
ally, we comment on the physical meaning of ǫg and what the
impact is of choosing a different set of frequencies to derive the
period spacing.

2. Method

The formalism proposed by Christensen-Dalsgaard (2012) is as
follows:

Πn l =
1

νn l

= ∆Πl

[

|n| + ǫg +
1

2
− Φ(νn l)

π

]

, (2)

where |n| is the absolute value of the numerical radial mode order
(see Section 2.1). Additionally, Φ(νn l) satisfies

tanΦ(νn l) = q cot

(

π

(

νn l

∆ν
− ǫp l

))

, (3)

where we assume that ∆ν has the same value as obtained from a
linear fit through the radial modes, i.e. a typical way to extract it
from the frequency spectra, and ǫp l is an offset for the acoustic
modes of degree l (see for more details Section 5.4).

To apply the formalism outlined here to observed dipole
frequencies we start by supplying the algorithm with an initial
guess of ∆Πl. We then compute the radial orders of the oscilla-
tion modes as per Eq. 7 and apply a χ2 fit procedure to Eq. 2.
Here, we allow |n| to vary by an integer and keep ∆ν fixed to
find the values of ∆Π, q, ǫg and ǫp 1 that give a best fit to the
observed frequencies of modes with a particular degree (l) and
azimuthal order (m). This is based on the fact that for slowly ro-
tating red giants we have computed the frequency of the m = 0
component of modes with m , 0 using the description by Mosser
et al. (2012a). To obtain a best fit with a lowest χ2 we use a grid
of initial guesses of ∆Π ranging for red giant branch stars from
50-100 seconds in steps of 0.01 seconds and for low-mass core
helium burning stars from 170 - 360 seconds in steps of 0.1 sec-
onds. In this way we obtain for each initial ∆Π the radial order
of the modes and a computed value for ∆Π, q, ǫg and ǫp 1 as well

as a measure of the goodness of fit through the χ2 value. We note
here that we have defined ǫp 1 to have a value between 0.5 and
1.5 similar to ǫp 0.

In this goodness of fit we have to account for the fact that we
expect a larger number of gravity modes (Nνg ) in a ∆ν interval
for lower values of ∆Π (Mosser et al. 2012b):

Nνg �
∆ν

∆Π ν2max

, (4)

where νmax is the frequency of maximum oscillation power.
To incorporate uncertainties in the observed frequencies as

well as correlations between different parameters we use a Monte
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Carlo approach with 100 iterations to perturb the observed fre-
quencies randomly within their uncertainties. We apply the de-
scribed method for each set of perturbed frequencies.

We note here that this formalism does not take into account
effects of glitches, i.e. sudden internal structure changes visible
as variations in the oscillation frequencies and thus also period
spacings (described in detail by Cunha et al. 2015, in the case of
buoyancy glitches). As stated by Cunha et al. (2015), buoyancy
glitch-induced variations occur on the red-giant branch only at
the luminosity bump, and after the red-giant branch only in the
early phases of helium core burning and at the beginning of he-
lium shell burning. Hence, we expect that for many stars it is not
necessary to perform a glitch analysis in order to extract period
spacings.

2.1. Radial order

Fundamental to the formalism discussed here is knowledge of
the radial order of every dipole feature that is present. Following
the asymptotic analysis, the period of a pure gravity mode can
be expressed as

Πn 1 = ∆Π(|ng| + ǫg + 1/2). (5)

From this we can estimate the absolute value of the gravity mode
order ng as

|ng| �
1

∆Π νn 1

, (6)

where we neglect the ǫg + 1/2 as |ng| >> ǫg + 1/2. The final
estimate of the radial order n of a specific frequency of a mixed
mode is a combination of the pure gravity radial order and the
pure pressure radial order (np) and can be computed as :

n = ng + np �
−1

∆Π νn 1

+

(

νn 1

∆ν
− ǫp 1

)

, (7)

where we used the general convention that gravity mode orders
are indicated with negative values. We note that ∆ν and ǫp 0 are
computed from a linear fit through the radial frequencies and
that a first estimate of ǫp 1 is obtained using the correction for the
degree according to ǫp 1 ≈ ǫp 0 + 1/2 (see also Section 5.4). Com-
bined with the requirement that the radial order of each mode
should be an integer and that n should increase with frequency,
we can compute n provided that all other parameters are known.
To obtain the radial mode orders of modes with m , 0 we es-
timate the rotational splitting using a Lorentzian profile as pro-
posed by Mosser et al. (2012a) to identify the frequency of the
underlying unsplit mode and use that frequency to compute the
radial order in the same way as outlined above.

3. Data

In this section we detail the data to which we apply the method
outlined above. These data comprise theoretical models and ob-
servational data of both red giant branch (RGB) stars and core
helium burning (CHeB) stars.

3.1. Red giant branch stars

We used the three red giant branch models described by Datta
et al. (2015) to test the application of the formalism discussed in
this manuscript. The models by Datta et al. (2015) are 1 M⊙ mod-
els at different stages of hydrogen shell burning computed us-
ing the MESA stellar evolution code (Paxton et al. 2011). These

models were chosen because they are computed independent of
the development of the formalism discussed here and ∆Π has
been provided. From the models we prepared sets of frequencies
that mimic "observational" data by selecting modes in three fre-
quency ranges with 5, 7 and 9 radial orders centred around νmax.
In this frequency range we kept either all frequencies, or we
selected modes with normalised inertias (with respect to radial
mode inertias) such that on average we have 5 modes per (acous-
tic) radial order. In the analysis we neglected the fact that we
know the radial orders of these oscillation modes. We assumed
an uncertainty of 0.008 µHz on all dipole frequencies. This value
is approximately the frequency resolution of the ∼ 4-year long
timeseries of Kepler data. We show throughout the paper the re-
sults obtained for the mode sets with all dipole modes in a 5∆ν
wide frequency range.

Additionally, we applied our method to frequencies from
stars observed by Kepler. We used frequencies for the sample of
stars presented by Datta et al. (2015) and Corsaro et al. (2015)1,
as well as KIC 4447888 (Di Mauro et al. 2016). Two of the three
stars analysed by Datta et al. (2015) are part of the sample anal-
ysed by Corsaro et al. (2015). We used both sets of data as the
frequency values have been determined independently. In total
21 stars were treated, with ∆Π values ranging from 68.5 to 90 s
(see also Fig. A.1 for a visual representation of the distribution
of dipole frequencies).

3.2. Core Helium burning stars

In the last few years several studies (e.g. Bossini et al. 2015;
Constantino et al. 2015; Lagarde et al. 2016; Bossini et al. 2017)
have investigated the physics that needs to be included to rem-
edy the discrepancy between ∆Π values of CHeB stars derived
from observations (e.g. Mosser et al. 2014) and from models
with standard physics included. In this work we use the models
described by Constantino et al. (2015) who computed 1 M⊙ solar
metallicity CHeB models using the MONSTAR stellar evolution
code (Lattanzio 1986; Campbell & Lattanzio 2008; Constantino
et al. 2014). These authors apply different core-mixing schemes
at different phases of core Helium burning, i.e. just after the he-
lium flash (or non-degenerate onset of He-core burning) all the
way towards exhaustion of helium in the core. We applied our
method to the models in Figs 9, 10, 12, 13, 14, 16 and 17 of Con-
stantino et al. (2015), which were provided by the authors. Ta-
ble 1 provides some basic information about the models. We use
‘regular’, ‘irregular’, ‘regular/spiky’ and ‘semi-regular’ to clas-
sify the observed period spacing (∆P) of the models as a func-
tion of frequency. This classification is determined from a visual
inspection of the ∆P versus frequency figures presented by Con-
stantino et al. (2015). We classify a star as regular when ∆P (rel-
atively) smoothly approaches minima at the pressure dominated
dipole modes and maxima at the radial modes (see for an exam-
ple the orange curve in the top panel of Fig. 12 of Constantino
et al. 2015). When such dips are not present as is the case in the
top panel of Fig. 9 of Constantino et al. (2015) we assign the
classification ‘irregular’. With ‘semi-regular’ we indicate mod-
els for which ∆P shows dips as a function of frequency, but with
a significant amount of irregular structure on top of that. We call
dips that are very narrow such as the cyan curves in Figs 14 and

1 We increased the uncertainties on the frequencies as provided by Cor-
saro et al. (2015) by a factor of three, as it was shown that these were
underestimated by roughly that factor (Corsaro et al. erratum in prepa-
ration).
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Table 1. Core helium burning models from Constantino et al. (2015) used in the current work. The first three columns give the figure number,
colour code used in the figure and the period spacing computed by Constantino et al. (2015). The last columns provide the identification we use
in this work, a comment concerning the regularity of the behaviour of the observed period spacing (∆P) with frequency, and a rough value of our
determined ∆Π for comparison purposes. The * indicates models for which we reliably recover ∆Π and that are used in the further analysis in this
paper.

Fig. # colour ∆Π our work regularity ∆P ∆Πthis work

9 black 240 s CHeBmodel 0 irregular* ∼241 s
9 blue 238 s CHeBmodel 1 irregular* ∼243 s

10 black 247 s CHeBmodel 2 irregular –
10 blue 247 s CHeBmodel 3 regular* ∼249 s
12 black 252 s CHeBmodel 4 irregular* ∼253 s
12 orange 253 s CHeBmodel 5 regular* ∼253 s
12 blue 253 s CHeBmodel 6 regular* ∼253 s
13 blue 253 s CHeBmodel 7 regular* ∼253 s
13 magenta 314 s CHeBmodel 8 regular* ∼316 s
14 black 278 s CHeBmodel 9 irregular –
14 cyan 281 sa CHeBmodel 10 regular/spiky –
16 black 273 s CHeBmodel 11 semi-regular* ∼274 s
16 orange 271 s CHeBmodel 12 regular/spiky –
16 cyan 264 s CHeBmodel 13 regular/spiky –
17 orange 268 s CHeBmodel 14 semi-regular* ∼277 s

a If the calculation includes only the region exterior to the chemical discontinuity then ∆Π = 315 s (Constantino et al. 2015).

16 ‘regular/spiky’. We applied our method to all models that we
have at our disposal.

The "observational" data were obtained from the models in
the same way as per the RGB models, described in the previous
subsection. Additionally, we applied the procedure to an Li-rich
star (KIC 5000307) in the red clump (Silva Aguirre et al. 2014).

4. Results

In this section we present the results that we obtained with our
method on the data described in the previous section. The results
are presented in Tables 2 and 3.

We show an illustration of the results for a RGB star in Fig. 1.
In this figure, histograms of the results with lowest χ2 per Monte
Carlo iteration as a function of ∆Π, ǫg, q and ǫp 1 are shown in
panels A − D, respectively. Panel E shows a period-échelle dia-
gram based on the derived ∆Π value (which value is quoted in
the x-axis label). Panel E actually consists of a repeated échelle
diagram to enable better visualisation the "S-shape". This is in
principle possible for our solutions as we have ǫg as a free pa-
rameter. We show the results for a CHeB star in a similar way in
Fig. 2).

We checked that the ratio of the uncertainty in ǫg (σǫg) to the
relative uncertainty in ∆Π (σ∆Π/∆Π) is roughly equal to |n|. This
is generally satisfied for our results.

Below we discuss our results for both the red giant branch
stars and core helium burning stars and compare them with lit-
erature values and/or values obtained from models. These com-
parisons are focussed on period spacings and coupling factors
as these parameters are available in the literature or can be com-
puted in an independent way from the models.

4.1. Red giant branch stars

The ∆Π results obtained in this work for all three models de-
scribed by Datta et al. (2015) are in agreement with their values
obtained from individual frequencies. The results are, however,
most stable for model 0 and less so for the other more evolved

models. This is due to the distribution of the dipole modes (see
below) as well as the large absolute value of the radial order.

For 20 out of 21 observed stars (two stars, KIC009145955
and KIC010200377, are analysed twice with slightly different
datasets) we find good agreement (better than 3%) between the
values of the period spacings obtained in this work and the re-
sults presented in the literature2. The relative differences are
shown in Fig. 3. For one red giant branch star we find a some-
what larger discrepancy between the ∆Π value obtained in our
work compared to the values obtained in the literature (∼4% dif-
ference): KIC 5866737. We discuss this star below in more detail.
Additionally, we also compared our values with period spacings
obtained by Vrard et al. (2016) for the 16 stars that we have in
common. The differences in the period spacings in this compari-
son are in all cases well within 1%.

For KIC 5866737 we find that the ratio of the uncertainty
in ǫg (σǫg) to the relative uncertainty in ∆Π (σ∆Π/∆Π) is not
roughly equal to |n|. At the same time, we find a ∆Π value that
is roughly 4% lower than obtained in the literature (see Fig. 3).
KIC 5866737 is the most evolved star in our sample of observed
stars, with dipole modes that are confined in a narrow range
around the pressure dominated mode. The coupling is expected
to decrease for more evolved stars along the RGB and we con-
clude that KIC 5866737 roughly indicates the limit along the
RGB at which the method discussed here can produce reliable
results in terms of gravity mode parameters. We note that for
RGBmodel 1 (∆Π ≈ 72 s) and RGBmodel 2 (∆Π ≈ 62 s) the
datasets that mimic observations also cause the method difficul-
ties and fail in a number of cases.

In Fig. 4 the coupling factor q and offset (ǫg + 0.5) mod 1
are presented. We show here (ǫg + 0.5) mod 1 as this is the full
offset that relates to the position of the g-dominated modes, i.e.
the position of the "S-shape", in the period-échelle diagram. For
the RGB stars (∆Π < 100 s, green histograms) we find q values

2 We note that the results presented by Corsaro et al. (2015) are
those obtained by Mosser et al. (2012b) and that for KIC 6144777,
KIC 7060732 we have used updated values of ∆Π = 79.23 s and
∆Π = 77.10 s, respectively (Corsaro private communication).
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Fig. 1. Results for KIC 10123207 using the frequencies from Corsaro et al. (2015). Panel A-D: histograms of ∆Π, ǫg, q, and ǫp 1 (see Introduction
for the meaning of these parameters). The ǫp 0 value determine from radial modes is indicated in the legend of panel D. A period-échelle diagram
using the ∆Π obtained in this work is shown in panel E. The vertical red dashed lines indicate ((ǫg + 0.5) mod 1)∗∆Π, i.e. the position of the most
g-dominated modes according to the fitted values. Note that the period-échelle diagram is shown twice separated by the dotted vertical line.

below 0.25 consistent with earlier results (Mosser et al. 2012b,
2017). For (ǫg +0.5) mod 1 in RGB stars we find values between
roughly 0.3 and 1. A discussion on this is presented in Section 5.

In Fig. 5, we compare our derived values for the coupling
factor with the values obtained by Mosser et al. (2017) and val-
ues from Corsaro (private communication) for the stars that we
have in common. Generally, the values are consistent within their
uncertainties (see top panel Fig. 5). However, we note that for
RGB stars (q < 0.25) we find a linear correlation between the
differences in q (our values − literature) vs. q with a Pearson r
coefficient of 0.7 (bottom panel of Fig. 5). We also computed the
t-statistic and use a two-sided t-test to find that we can reject a
relation with zero slope at > 99% level. This correlation could
be related to the fact that in our analysis we have left ǫg as a

free parameter, while ǫg was kept fixed in the analyses already
present in the literature.

4.2. Core Helium Burning stars

In this work we analyse the models by Constantino et al. (2015)
as described in Table 1. The results of these models are mostly
summarised in Table 1. From these results we conclude that our
method can be applied to CHeB stars with non-spiky behaviour,
where some irregular behaviour can be accounted for. For
CHeBmodel 2 we seem to be at the limit of the amount of
irregularity the method can handle, although in some mode sets
we do find the correct solution. For CHeBmodel 9, we find, in
addition to the irregularity, spikes in the mode inertia profile
that most likely hamper the determination of the period spacing.
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Fig. 2. Same as Fig. 1 for CHeBmodel 7 with all frequencies selected in a 5∆ν wide range.

For the analysis in the remainder of this paper we take CHeB
models 0,1, 3, 4, 5, 6, 7, 8, 11, 14 (indicated with a * in Table 1)
into account. The results for these models are also shown in
Fig. 3.

In terms of observations of CHeB stars we have frequen-
cies for KIC 5000307, which is a lithium-rich star (Silva
Aguirre et al. 2014). The current result for ∆Π is close (∼1%
difference) to the value obtained by Silva Aguirre et al. (2014).
Such a value is consistent with the results by Mosser et al.
(2014) for a 1.5-2 M⊙ CHeB star.

For CHeB stars with ∆Π values that are deemed reliable,
Fig. 4 shows the coupling factor q and offset ǫg. For the CHeB
stars (∆Π > 200 s, blue dashed histograms) we find q values be-
tween 0.2 and 0.4 in agreement with earlier results (Mosser et al.
2012b, 2017).

5. Discussion

We have shown that we can constrain ∆Π, q, ǫg and ǫp 1

for stars with enough observed dipole modes using the for-
malism proposed by Christensen-Dalsgaard (2012), Jiang &
Christensen-Dalsgaard (2014), Cunha et al. (2015) and Hekker
& Christensen-Dalsgaard (2017). Based on these results, we first
discuss what the obtained parameters reveal about the internal
structures of the stars and subsequently investigate the impact of
different mode sets.

5.1. Period spacing ∆Π

For the models we have compared the value of ∆Π obtained from
frequencies using the approach outlined herein and the asymp-
totic value (∆Πl,asymptotic) computed through the integral of the
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Table 2. Results for the RGB stars and models. For most stars the results are based on the frequencies presented by Corsaro et al. (2015). Stars
indicated with superscript ‘a’ show results based on frequencies presented by Datta et al. (2015) and the star indicated with superscript ‘b’ shows
results based in frequencies presented by Di Mauro et al. (2016). For the models we show results for the mode set with all dipole frequencies
included in a 5∆ν wide range.

star ∆Πlit [s] ∆Π [s] ǫg q ǫp 1 ∆ν [µHz] p

KIC003744043 75.98 76.050.09
0.10

0.90.1
0.1

0.1400.010
0.010

0.8100.010
0.047

9.841±0.006 1.00

KIC004448777b 89.87 89.330.02
0.03

0.290.01
0.01

0.1550.002
0.001

0.88410.0006
0.0007

16.921±0.006 0.66

KIC005866737a 68.49 66.0140.005
0.006

0.0080.012
0.008

0.0930.006
0.005

0.6860.003
0.003

6.499±0.006 0.42

KIC006117517 76.91 76.860.06
0.06

0.090.10
0.08

0.150.02
0.03

0.8720.005
0.005

10.031±0.006 1.00

KIC006144777 79.23 79.040.02
0.04

0.240.04
0.03

0.1210.007
0.007

0.800.01
0.01

10.956±0.004 1.00

KIC007060732 77.10 77.760.05
0.04

0.140.05
0.06

0.1290.006
0.008

0.7990.003
0.004

10.853±0.004 0.81

KIC007619745 79.17 79.040.06
0.09

0.130.09
0.05

0.1440.009
0.011

0.8690.006
0.051

13.059±0.006 0.95

KIC008366239 86.77 87.840.15
0.09

0.250.07
0.10

0.140.01
0.01

0.8660.005
0.004

13.619±0.006 0.97

KIC008475025 74.80 74.460.03
0.06

1.000.09
0.05

0.1260.009
0.007

0.7640.004
0.003

9.572±0.004 1.00

KIC008718745 79.45 79.990.03
0.03

0.340.05
0.04

0.1460.008
0.006

0.7880.003
0.003

11.363±0.005 0.98

KIC009145955a 76.98 77.0230.008
0.008

0.9830.010
0.011

0.1550.002
0.002

0.88000.0009
0.0009

10.882±0.005 1.00

KIC009145955 77.01 76.780.06
0.05

0.310.08
0.06

0.170.01
0.02

0.8270.007
0.005

10.941±0.005 1.00

KIC009267654 78.41 78.130.09
0.09

0.930.13
0.10

0.140.01
0.01

0.7980.007
0.007

10.239±0.004 0.79

KIC009475697 75.70 75.540.04
0.05

0.230.09
0.07

0.180.02
0.02

0.7970.005
0.005

9.806±0.004 0.56

KIC009882316 80.59 80.420.08
0.10

0.140.09
0.07

0.190.01
0.01

0.8600.008
0.007

13.602±0.007 1.00

KIC010123207 83.88 83.590.06
0.06

0.280.05
0.06

0.180.01
0.01

0.8360.004
0.006

13.629±0.007 1.00

KIC010200377a 81.54 81.3000.010
0.009

0.3380.009
0.011

0.1550.002
0.002

0.78200.0006
0.0008

12.501±0.007 1.00

KIC010200377 81.58 81.460.04
0.03

0.150.04
0.05

0.190.02
0.01

0.8950.005
0.005

12.377±0.004 1.00

KIC010257278 79.81 79.720.07
0.05

0.080.07
0.05

0.1430.009
0.009

0.810.06
0.01

12.114±0.005 0.89

KIC011353313 76.00 77.150.09
0.12

0.00.2
0.1

0.150.01
0.02

0.7720.017
0.010

10.724±0.006 1.00

KIC011913545 77.84 77.790.09
0.06

0.080.07
0.08

0.1230.014
0.008

0.7900.036
0.002

10.092±0.004 0.98

KIC011968334 78.10 77.790.07
0.05

0.450.07
0.09

0.130.01
0.01

0.8220.004
0.004

11.363±0.005 1.00

KIC012008916 80.47 81.40.3
0.2

0.20.2
0.2

0.090.01
0.02

0.8040.044
0.008

12.834±0.005 0.62

RGBmodel 0 82.61 82.2390.007
0.008

0.3170.009
0.009

0.1410.002
0.002

0.52120.0008
0.0008

11.977±0.003 1.00

RGBmodel 1 73.49 73.2160.007
0.006

0.300.01
0.02

0.1260.005
0.004

0.5010.002
0.002

7.136±0.003 1.00

RGBmodel 2 62.15 62.0360.005
0.006

0.140.05
0.04

0.0790.009
0.008

1.3570.005
0.004

4.186±0.003 0.55

Table 3. Same as for Table 2 for CHeB stars.

star ∆Πlit [s] ∆Π [s] ǫg q ǫp 1 ∆ν [µHz] p

KIC005000307 319.95 322.20.1
0.1

0.480.03
0.02

0.340.01
0.02

0.6280.005
0.004

4.724±0.002 0.65

CHeBmodel 0 240.00 241.980.01
0.02

0.9890.006
0.006

0.240.02
0.02

1.0510.006
0.004

3.527±0.003 0.86

CHeBmodel 1 238.00 243.320.06
0.07

0.360.05
0.03

0.220.02
0.01

1.0490.004
0.006

3.584±0.003 0.99

CHeBmodel 3 247.00 249.830.04
0.07

0.570.04
0.03

0.230.02
0.01

0.9410.006
0.005

3.611±0.003 1.00

CHeBmodel 4 252.00 253.300.04
0.05

0.150.03
0.03

0.2490.009
0.014

1.0040.006
0.004

3.734±0.003 0.68

CHeBmodel 5 253.00 253.800.06
0.04

0.310.02
0.03

0.260.02
0.01

1.4000.004
0.005

3.908±0.003 1.00

CHeBmodel 6 253.00 253.820.06
0.04

0.330.02
0.03

0.260.02
0.01

1.4000.006
0.005

3.908±0.003 1.00

CHeBmodel 7 253.00 253.760.06
0.06

0.140.03
0.03

0.250.02
0.02

1.0080.006
0.005

3.740±0.003 0.98

CHeBmodel 8 314.00 315.960.07
0.08

0.290.03
0.02

0.290.02
0.01

1.3490.006
0.004

3.810±0.003 1.00

CHeBmodel 11 273.00 274.090.06
0.06

0.430.02
0.03

0.280.02
0.01

1.3340.004
0.004

4.090±0.003 1.00

CHeBmodel 14 268.00 277.300.06
0.07

0.490.03
0.02

0.280.01
0.02

1.3250.004
0.006

3.743±0.003 1.00

Brunt-Väisälä frequency:

∆Πl,asymptotic =
2π2

l(l + 1)

(
∫ r2

r1

N
dr

r

)−1

, (8)

with N the Brunt-Väisälä frequency and r1 and r2 the points the
lower and upper turning points3.

3 In practice we computed one value for ∆Πl,asymptotic per model taking
the integral over the total area of the Brunt-Väisälä frequency and not
a separate value for each frequency with its specific turning points. The

The observed and computed asymptotic values are in broad
agreement; for RGB models the value computed from the Brunt-
Väisälä frequency are a bit higher (typically of the order 0.01
to a few times 0.1 second) than the one obtained from the fre-
quencies. This is as expected from theory and in line with earlier
results (e.g. Datta et al. 2015). For the CHeB models we find
that our ∆Π values obtained from frequencies are larger than
the asymptotic reference values (up to about 10 seconds, see

difference in the values is however negligible compared to the differ-
ences we discuss here.
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Fig. 3. Comparison of the period spacings derived in this work with
reference values, where in case of the models the reference values are
computed from the integral of the Brunt-Väisälä frequency (Eq. 8) and
in case of real data reference values are observed values from the liter-
ature with updated values for KIC 6144777, KIC 7060732, see text for
details]. Results for real stars and models are shown in black dots and
open red diamonds, respectively. Error bars are mostly smaller than the
symbol size. Precise agreement is highlighted by the dotted line.

Fig. 3). These relatively high values for ∆Π seem to be consis-
tent with earlier findings by e.g. Mosser et al. (2014) and studied
in more detail by Constantino et al. (2015). These authors report
a systematic differences in ∆Π of CHeB stars between observa-
tions (using frequencies) and model predictions (using the Brunt-
Väisälä frequency). The larger values of ∆Π obtained from fre-
quencies may indicate that in CHeB stars the frequencies are not
sensitive to the whole buoyancy cavity, possibly due to a discon-
tinuity, or additional convective areas blocking the oscillations.
Bossini et al. (2017) indeed find that additional mixing in terms
of core-overshooting can mitigate the differences in ∆Π between
observations and models.

5.2. Coupling term q

It is known that q provides information about the coupling of
the wave in the gravity and acoustic cavity, with q = 0 for no
coupling and q = 1 for full coupling (e.g. Takata 2016a). In
the current study, we would like to further our understanding as
to the dependence of q on physical parameters of the star. Fol-
lowing Takata (2016a) and Mosser et al. (2017) it is possible to
compute q for the models for each frequency using the following
general formulation:

q =
1 −
√

1 − T 2

1 +
√

1 − T 2
(9)

with T the amplitude transmission coefficient, i.e. a measure of
how much of the wave passes through a barrier (in this case the
evanescent zone), computed as

T = exp

(

−
∫

D

κ dr

)

(10)

with D the radial extent of the evanescent region and κ the radial
wave vector:

κ =

√

(S 2
1
− ω2)(ω2 − N2)

cω
(11)

Fig. 4. Panel A: Coupling factor q vs. ∆Π for all objects. Real stars
are indicated with black dots and models with red diamonds. Panel B:
histogram of q for RGB stars (real stars + models) and CHeB stars in
green solid and blue dotted lines, respectively. Panel C: same as panel
A, but now for ((ǫg + 1/2) mod 1) vs. ∆Π. Panel D: distribution of (ǫg +
1/2) mod 1. Panel E: the distribution of ∆Π results. The colour coding
and linestyles in panel D and E are the same as in Panel B. In panels A
and C uncertainties are over plotted. These are however in a number of
cases smaller than the symbol size.

with S 1 the Lamb frequency of a dipole mode, N the Brunt-
Väisälä frequency, ω the angular frequency equal to 2πν and c
the sound speed.

For the computed values of q we find a different value for
each oscillation mode due to the fact that each oscillation mode
has a different κ (Eq. 11) and encounters a slightly different
evanescent zone as a consequence of the shape of the Brunt-
Väisälä and Lamb frequencies. However, when extracting q from
observations, only one global value can be obtained as only the
ensemble of dipole modes contains sufficient information to ex-
tract q. A comparison of the results of the computed q values of
the models with the value of q obtained from the analysis using
the method described in this paper is shown in Fig. 6. The results
are generally consistent for q > 0.1, while for weaker coupling
we find that qobserved is over-estimated compared to the values
obtained from the models. This is consistent with the results by
Mosser et al. (2017), whom find that the computed coupling fac-
tor of a model high on the RGB is significantly smaller value
than the observed value. The reason for this remains so far un-
clear.

We subsequently investigate the dependence of q on physical
parameters of the star and find empirically that q shows a tight
correlation with ∆r/revanescent, which is the radial extent of the
evanescent zone normalised by the radius of the (midpoint of
the) evanescent zone revanescent. This correlation extends over the
full range of q that is covered by our models except for a small
deviation for RGB model 0 at its highest q values (see Fig. 7).
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Fig. 5. Top: Comparison between the coupling factor qthis work de-
termined in this work and the values qreference obtained by Mosser
et al. (2017, black dots) and Corsaro (private communication, magenta
crosses) for the stars that we have in common. The dotted line indicates
agreement. Bottom: the difference between the coupling in this work
and in the reference values in the sense qthis work − qreference. Note that no
uncertainties are provided by Corsaro.

We use symbolic regression to find a functional fit. With this
symbolic regression we find that ∆r/revanescent is linearly related
to ln(qcomputed), where qcomputed is computed using Eqs 9 - 11:

∆r/revanescent = 0.07 − 0.24 ln(qcomputed). (12)

This linear behaviour is expected theoretically (see Eqs 9-11)
and vindicated by the use of the symbolic regression. We spec-
ulate that the deviation of RGB model 0 from the relation is be-
cause this model is earliest in evolution compared to the other
models and still on its way to the homology that is apparent in
the other models. We note that the coefficients in Eq. 12 are valid
for 1 M⊙ models with solar metallicity and may differ depending
on mass and metallicity.

5.3. Offset ǫg

We now consider ǫg. In this work we have kept ǫg a free param-
eter and checked whether (ǫg + 0.5) mod 1 is consistent with
the position of the g-dominated mode in the period-échelle dia-
gram (red dashed lines in panel E of Fig. 1). This is indeed the
case. We use a Kolmogorov-Smirnov test to check whether the
distribution of ǫg that we find is consistent with the distribution
of ǫg fixed to 0. For the observational data (black dots in Fig. 4)
the probability of the cumulative distributions being the same is
2.6 · 10−8. For the models the probability of the cumulative dis-
tributions being the same is 5.3 · 10−8. In case of the combined
sample the consistency is vanishingly small with a probability of
1.8 · 10−12. As a final check, we performed the analysis as de-
scribed in Section 2 with ǫg fixed at 0. In these cases (ǫg + 0.5)

Fig. 6. The coupling factor computed using the method outlined in Sec-
tion 2 (qobserved) vs. the coupling factor for each frequency computed
using Eqs 9, 10 and 11 (qcomputed). For visual purposes we show the indi-
vidual points with uncertainties for the RGB models and for the CHeB
models a rectangle that comprises the results including the uncertainties
for that particular model. So the horizontal width of the box indicates
the spread in q computed through Eq. 9 - 11 for all frequencies in a
range of 5 times ∆ν centred around νmax. The legends show the colour
with which each model is indicated.

Fig. 7. The radial extent of the evanescent zone (∆r) normalised by the
radius of the midpoint of the evanescent zone (revanescent) versus the nat-
ural logarithm of the coupling factor (ln(qcomputed)) for each frequency
in the frequency range νmax ± 3.5∆ν computed using Eqs 9, 10 and 11.
The colour coding is the same as in Fig. 6. The grey line indicates the
fit as indicated in the legend (see text for more details). The values of
qcomputed are shown in the top axis.

mod 1 is in a number of cases not consistent with the location
of the g-dominated modes in the period-échelle diagram. Hence,
we conclude that ǫg should not be kept fixed.

It is noteworthy that for the RGB models 1 and 2 the value of
q decreased towards the theoretical value when keeping ǫg fixed.
As the period-échelle diagram did not reflect the value of ǫg we
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Fig. 8. Values of (ǫp 0 + 0.5) − ǫp 1 vs. ∆ν for observed stars (black dots)
and models (red diamonds).

do not trust these results. It does however indicate a correlation
between ǫg and q. Indeed, for the stars and models considered
here we find a linear correlation between q and ǫg with a Pearson
r coefficient of 0.34. We note that it may be that it is this cor-
relation that is (partly) responsible for the correlation evident in
Fig. 5.

The results in Fig. 4 show that there is a preference for ǫg to
be larger than 0.3 for RGB stars. Our sample of stars is too small
to judge whether this is a coincidence, due to selection effects or
real.

5.4. Offset ǫp 1

As discussed previously, the frequencies at which the radial and
dipole pressure modes are observed are described with the help
of two offsets, ǫp 0 for the radial modes and ǫp 1 for the dipole
modes. Here we investigate the assumption that ǫp l = ǫp 0 + l/2
(Section 2). We show in Fig. 8 that indeed most of the (ǫp 0 +

0.5) − ǫp 1 values (that is equivalent with δν01/∆ν) for the RGB
stars cluster around zero. We note a decrease of (ǫp 0 + 0.5)− ǫp 1

for CHeB models towards lower values of ∆ν similar to what
was presented by Corsaro et al. (2012) for δν01/∆ν for CHeB
stars. The main discrepancies lie in the five models that have
values for (ǫp 0 + 0.5) − ǫp 1 above 0.1. These are CHeB models
0, 1, 3, 4 and 7. For these models we checked the frequencies
and the values for ǫp 0 and ǫp 1 obtained by our method do reflect
the locations of the radial modes and p-dominated dipole modes,
respectively. Therefore, it may be that there is something with
the structure of the model. We find that the models that have
positive values of (ǫp 0 + 0.5) − ǫp 1 are all the original models or
have mode inertias that have not shifted compared to the original
models.

5.5. Cavity boundaries

Recently, Mosser et al. (2017) suggest that the local density con-

trast of the core βN = − d ln N
d ln r

and the envelope βS = − d ln S 1

d ln r
are

approximately equal:

−d ln N

d ln r
= βN ≃ β ≃ βS = −

d ln S 1

d ln r
. (13)

This suggestion is based on the fact that the Brunt-Väisälä fre-
quency and the Lamb frequency show similar radial variations

Fig. 9. Propagation diagram of a RGB (black) and CHeB model (red)
with the Brunt-Väisälä frequencies indicated in the solid lines and the
Lamb frequencies with the dashed lines. The region in which we can
expect oscillations to be observed is indicated with the blue bar.

for the frequencies probed in the region between the hydrogen-
burning shell and the base of the convective envelope where
the evanescent zone is located. This assumption is based on the
analysis by Takata (2016a), which is inspired by models with
∆ν > 20 µHz. For our analysis of more evolved (RGB stars with
∆ν < 15 µHz) the propagation diagram (Fig. 9) shows that this
seems a valid approximation for CHeB stars, but not for the RGB
stars analysed in this work that are more evolved than the ones
addressed by Takata (2016a).

Further investigation of βN shows that these values increase
with decreasing value of frequency for RGB stars (Fig. 10). In
this figure we removed oscillation modes for which the computa-
tion of κ (Eq. 11) was hampered by the spike in the Brunt-Väisälä
frequency due to the discontinuity in the mean molecular weight
at the deepest extent of the convection zone. We note that βN � 1
for CHeB stars and does not show significant variations with fre-
quency.

Takata (2016a,b) and references therein, show that ǫg de-
pends on the phase lags introduced at both the inner and outer
turning points of the wave as well as the reflection coefficient
of the edges. Fig. 10 indicates that βN shows trends with ν (and
with q). We expect that this could induce a different reflection co-
efficient and hence could show a correlation with ǫg. We indeed
see a decrease in ǫg with the evolution along the RGB (that is
with models with decreasing frequencies) indicated with the dia-
monds and the right axis in the left panel of Fig. 10. This could
indicate that a larger density contrast at the edge of the g-mode
cavity would cause a lower offset ǫg. More models are required
to confirm this trend.

For βS (Takata 2016b) predict an upper limit for RGB stars
of 1.5. We find consistent results for our models with a roughly
constant value of βS � 1.35, with an increasing value towards
lower frequency.

5.6. Impact of different mode sets and correlations

In some cases different mode sets arise from independent analy-
sis of the stars, in other cases we choose different mode sets from
stellar models using different criteria to select the modes.

For the different mode sets of the stars KIC 9145955 and
KIC 10200377 we see substantial overlap in the detected modes
and their frequencies (see Fig. A.1), which results in derived val-
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Fig. 10. The local density contrast of the core βN vs frequency for the
three RGB models. The diamonds indicate the value of ǫg obtained for
each model, considering all dipole frequencies in a 5∆ν wide frequency
range, as per the right-hand axis. The colour-coding is the same as in
Fig. 6.

ues for ∆Π, q, ǫg, ǫp 1 and ∆ν that differ outside the quoted un-
certainties. As ∆ν is obtained from the radial modes and is kept
fixed during the remainder of the procedure, the difference in this
parameter may have impact on the other results. So, we see that
the results are frequency dependent and that formal uncertainties
as quoted here do not account for that.

Furthermore, for both the models and the observed stars we
find clear correlations between the obtained ∆Π and ǫg. All dif-
ferent mode sets of a particular model show a trend in which
(ǫg + 0.5) mod 1 decreases with increasing ∆Π as expected from
Eq. 2. For the CHeB models we additionally see that 1) the wider
frequency range always leads to lower values of (ǫg + 0.5) mod 1
and a higher value of ∆Π and 2) that this is the case irrespective
of the selections of the frequencies in this range (at least for the
two sets we investigated here). For the RGB models the correla-
tion with the different datasets with different frequency ranges is
not so clear.

The trends that are present in our results are similar to the
ones between ∆ν and ǫp for the acoustic modes. For the acoustic
modes these differences are related to the fact that ∆ν is a func-
tion of frequency due to stellar structure changes on long and
short scales. From theory it is also expected that the period spac-
ing is frequency dependent, which is what appears in our current
results. This together with the fact that we find systematic dif-
ferences between ∆Π obtained from frequencies and from the
integral of the Brunt-Väisälä frequency is a direct indication that
a comparison of ∆Π, as well as other parameters, obtained from
the same sets of frequencies in both observations and models is
essential for detailed comparisons.

6. Conclusions

In this work we investigated the use of the formalism by Jiang
& Christensen-Dalsgaard (2014) for red-giant branch and core
helium burning stars to obtain values for ∆Π, q, ǫg and ǫp 1 from
individual frequencies. This formalism provides a global solu-
tion based on all dipole modes with the same azimuthal order
and can be applied to all azimuthal orders for which the results
are combined in the current work.

The fact that the radial order is explicitly included in this for-
malism reduces problems with alias results that are present in

other methods and provides the possibility to constrain ǫg. On
the other hand we find that for cases with weak coupling e.g.
KIC 5866737 the lower number of frequencies and the higher ra-
dial order provide challenges to the method resulting in reduced
reliability of the results.
The current results indicate:

– that for RGB stars (ǫg + 0.5) mod 1 can be constrained and is
in all cases analysed here between 0.3 and 1;

– that the local density contrast at the edge of the g-mode cav-
ity (βN) does follow a trend with ǫg. This needs further anal-
ysis;

– that there is systematic overestimation of ∆Π for CHeB stars
when computed from frequencies compared to the asymp-
totic value computed from the integral of the Brunt-Väisälä
frequency, as already mentioned in the literature;

– that ∆Π and (ǫg + 0.5) mod 1 depend on the mode set from
which they are determined, where for CHeB models mode
sets covering a wider frequency range provide higher values
for ∆Π and lower values for (ǫg + 0.5) mod 1. These trends
are typically not included in the quoted uncertainties. To mit-
igate this when performing a model comparison we deem it
vital to treat data and models in the same way for a meaning-
ful result;

– the values for ǫp 1 for the CHeB models may indicate that ad-
ditional physics has to be included in the models as presented
by Constantino et al. (2015).

From the models we find a linear correlation between the
relative width of the evanescent zone normalised by its location
(∆r/revanescent) and the natural logarithm of the coupling factor q.

To further explore these conclusions and investigate the dif-
ferences and trends in more depth, larger sets of observed stars
and systematically chosen models for which individual frequen-
cies are available need to be investigated. Developments of meth-
ods to extract individual frequencies from the power spectra of
timeseries data are being developed (e.g. Corsaro et al. 2015,
Garcia Saravia Ortiz de Montellano et al. in preparation) and
the frequencies of larger sets of observed stars are expected in
the near future.
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Fig. A.1. The dipole frequencies of all RGB stars used in the present
analysis normalised by the median dipole frequency of the star. Modes
with azimuthal orders −1, 0, 1 are shown (with a slight offset to one an-
other) in red, black and orange, respectively. Stars names with a super-
script ‘a’ and ‘b’ indicate that the data are taken from Datta et al. (2015)
and Di Mauro et al. (2016), respectively. All other data are taken from
Corsaro et al. (2015). On the left the period spacings presented in these
references are shown (including the updates by Corsaro, see text). The
stars are ordered following the red-giant branch with the least evolved
star at the bottom and the most evolved star at the top.
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