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A. Garćıa Saravia Ortiz de Montellano1,2?, S. Hekker1,2, N. Themeßl1,2
1Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
2Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Space observatories such as Kepler have provided data that can potentially revolu-
tionise our understanding of stars. Through detailed asteroseismic analyses we are
capable of determining fundamental stellar parameters and reveal the stellar internal
structure with unprecedented accuracy. However, such detailed analyses, known as
peak bagging, have so far been obtained for only a small percentage of the observed
stars while most of the scientific potential of the available data remains unexplored.
One of the major challenges in peak bagging is identifying how many solar-like os-
cillation modes are visible in a power density spectrum. Identification of oscillation
modes is usually done by visual inspection which is time-consuming and has a degree
of subjectivity. Here, we present a peak detection algorithm specially suited for the
detection of solar-like oscillations. It reliably characterises the solar-like oscillations in
a power density spectrum and estimates their parameters without human intervention.
Furthermore, we provide a metric to characterise the false positive and false negative
rates to provide further information about the reliability of a detected oscillation mode
or the significance of a lack of detected oscillation modes. The algorithm presented
here opens the possibility for detailed and automated peak bagging of the thousands
of solar-like oscillators observed by Kepler.
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stars: oscillations

1 INTRODUCTION

With the advent of space observatories CoRoT (Baglin et al.
2006) and Kepler (Borucki et al. 2010) there are high-
quality, near-uninterrupted and long (> 100 days) photomet-
ric time series measurements for an unprecedented number
of stars available. For solar-like oscillators the power density
spectrum (PDS) of time series data contains rich informa-
tion that allows for a precise determination of fundamental
stellar properties provided that individual oscillation mode
parameters are measured accurately (Christensen-Dalsgaard
2004). However, most of the currently existing methods to
analyse in detail the PDS require substantial human in-
tervention. For this reason the scientific potential of the
large amount of available data has not been fully exploited.
Furthermore, since current methods rely on human input
they carry a considerable degree of subjectivity. Therefore, a
method to reliably extract all the relevant information from
the measured PDS in an automated way is greatly needed.
This issue will be fundamental to take advantage of upcom-
ing missions such as TESS (Ricker et al. 2014) and PLATO
(Rauer et al. 2014). It is expected that TESS and PLATO
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will detect approximately 3×105 and 2×105 stars with solar-
like oscillations (Huber 2018), respectively. This will greatly
increase the amount of available data.

The power density spectra of solar-like oscillators have a
complex structure stemming from a combination of the gran-
ulation background and the stochastically excited global os-
cillation modes. This makes it challenging to model the PDS
accurately. The functional form of the granulation back-
ground component has been the topic of several studies (e.g.
Harvey 1985; Michel et al. 2009; Kallinger et al. 2014) and it
takes the form of a superposition of super-Lorentzian profiles
to take into account granulation at different time scales. Ad-
ditionally, each individual global stochastic oscillation mode
in the power excess is well described by a Lorentzian profile,
in case the mode width is larger than the frequency resolu-
tion (Kumar et al. 1988), or by a sinc2 function otherwise
(Christensen-Dalsgaard 2004). One of the main challenges
in modelling the stochastic oscillations resides in identify-
ing how many oscillation modes are visible in a given PDS
realisation. Furthermore, in practice, it is desirable to have
at least a crude estimate of all the parameters describing
each oscillation mode. For example in a Maximum Like-
lihood Estimation (MLE) having a set of adequate initial
values for all parameters is necessary to avoid local minima
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(Toutain & Appourchaux 1994). The Bayesian estimations
using the Markov-Chain Monte-Carlo methods require an
adequate prior probability distribution for each parameter
which can be constructed from the initial estimates (Hand-
berg & Campante 2011). These initial estimates can be ob-
tained by visual inspection of the PDS since the oscillation
modes produce peaks with recognisable patterns in the PDS.
However, this method is not scalable to the large number of
stars observed by space missions. Additionally, a visual in-
spection inevitably introduces a degree of subjectivity tied
to the person doing the analysis. This subjectivity can par-
tially be mitigated by assessing the statistical significance of
each oscillation mode found in the PDS which prevents the
inclusion of non-significant peaks in the PDS model. How-
ever, there might still be significant peaks that escape the
visual inspection and are never tested for inclusion. There-
fore, a reliable peak-detection method that is free from sig-
nificant human input would greatly benefit the analysis of
large samples of stars.

A number of peak detection algorithms have been devel-
oped over the last decades. A common approach is to search
for local maxima with a signal-to-noise ratio (SNR) above a
certain threshold with the SNR depending only on the peak
height (e.g. Appourchaux et al. 2012). A major problem in
this approach is that noise can have larger heights than some
peaks caused by oscillations, this could produce a large num-
ber of either false positives or false negatives depending on
the chosen SNR threshold. Furthermore, tests on the peak
height would miss significant peaks that are wide but have
a small height. Since most peaks in the PDS of solar-like os-
cillators have a width larger than the frequency resolution,
this issue can be partially mitigated by smoothing before
attempting a peak detection. However this approach is very
sensitive to the width of the mode (i.e. its lifetime) and the
amount of smoothing applied; peaks with different widths
are more prominent with different amounts of smoothing.
So with this approach it is impossible to choose a unique
best strategy to correctly identify all features of interest.

In the current work we present a different approach
based on an extension of the peak-detection algorithm pro-
posed by Du et al. (2006) in the context of mass spectrom-
etry. This algorithm uses a continuous wavelet transform
(CWT)-based pattern-matching algorithm where there is no
need for smoothing and most features are correctly identi-
fied while keeping the false positive rate low (Cruz-Marcelo
et al. 2008). The CWT serves as a pattern-matching function
where the signal is compared to a wavelet function specif-
ically chosen to have similar features as the most common
peaks that contain signal. The CWT has two parameters,
location and scale, that regulate the position on which the
matching is being calculated and the width of the feature be-
ing matched, respectively. The CWT has a similar effect as
a smoothing where the amount of smoothing is variable and
controlled by the scale parameter. This approach is similar
to searching for narrow features with little smoothing and
wide features with a larger amount of smoothing simultane-
ously.

Solar-like oscillators produce peaks in their PDS that
are similar to the peaks studied by Du et al. (2006) which
makes the CWT-based pattern-matching algorithm ade-
quate for this context. We find that the original formula-
tion of the algorithm is reliable when the peaks are well

separated, however it fails to correctly identify them when
the modes have significant overlap, which is a common sce-
nario in the PDS of solar-like oscillators. Furthermore, the
original algorithm by Du et al. (2006) only estimates the
location of the peak and not its height and width. We pro-
pose an extension which is more tolerant to peak overlap and
also estimates the height and width of the peaks. To achieve
these improvements we incorporate the additional assump-
tion that the individual peaks are described by Lorentzian
functions, as is the case for solar-like oscillations (Anderson
et al. 1990). Additionally, we require that the PDS contains
only information from the stochastically excited oscillation
modes, i.e. that the PDS has been normalised to remove the
granulation contributions.

In Section 2 we describe the algorithm by Du et al.
(2006) and the adaptations we made for the case of analysing
the PDS of solar-like oscillators. We then characterise the
performance of the proposed algorithm by looking at the
number false positive (Section 3) and false negative (Section
4) peak detections. In Section 5 we compare our estimation
with previous studies of helioseismic data from the Birm-
ingham Solar-Oscillations Network (BiSON) (Davies et al.
2014; Hale et al. 2016) and in Section 6 we compare our re-
sults as obtained from photometric measurements made by
the Kepler space observatory with the results from Corsaro
et al. (2015) for 19 red-giants. In each case we find similar
values for the number of peaks present in the background-
normalised PDS as well as their location, height and width
albeit with some minor discrepancies. In contrast to previous
approaches, the procedure presented here requires no human
intervention which makes it more objective and suitable for
the analysis of present and upcoming large data sets.1

To study the internal structure of solar-like oscilla-
tors, the frequency of the oscillations are not sufficient. We
also need to characterise each mode by its spherical degree
and azimutal order. An automated procedure to obtain this
mode identification will be presented in a forthcoming paper.

2 PEAK DETECTION METHOD

The peak detection method proposed by Du et al. (2006)
is based on using the continuous wavelet transform (CWT)
of a signal as a pattern-matching function. The CWT of a
function s(x), denoted as W [s], is an integral transform
that depends on two parameters, (a, b), usually referred to
as scale and location, respectively. It is defined as

W [s] (a, b) =
1
√

a

„ ∞
−∞

s(x′) ψ
�

x′ − b
a

�
dx′ , (1)

where ψ(x) is a continuous function called the mother
wavelet and the overline denotes complex conjugation. In-
tuitively, the CWT value reflects the pattern matching be-

tween the signal s(x′) and ψ
�

x′−b
a

�
with larger values rep-

resenting a better match. The mother wavelet is intention-
ally chosen to have properties useful for a specific analysis.
An appropriate mother wavelet for peak detection is the

1 The source code implementing the algorithm presented here
will be publicly available in the future as part of an automated

peak-bagging pipeline.
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Figure 1. Mexican-hat mother wavelet as de�ned by (2) with
� = 1.

mexican-hat wavelet, also know as Ricker wavelet (Ricker
1944), given by

 ¹xº =
2

p
3�� 1•4

�
1 �

x2

� 2

�
e� x2•2� 2

: (2)

It is the second derivative of a Gaussian function
with variance � 2 and a normalization factor such that¯ 1
1 j ¹x0ºj2dx0 = 1 (see Fig. 1). It was shown by Du et al.

(2006) that this wavelet is useful for peak �nding in spectra
since it has the basic features of the most common peaks in
a spectrum: approximate symmetry, a major positive peak
and �nite width.

2.1 Single peak

We describe the peak detection method by Du et al. (2006)
by illustrating it on a PDS realisation originating from a
single stochastically-excited global oscillation mode. We as-
sume that there is no contribution to the PDS other than the
oscillation mode, i.e. we have a background-normalised PDS.
The limit PDS in this case can be described by a Lorentzian
pro�le. As an example we consider a Lorentzian pro�le with
a central frequency � k , a height of Ik = 10 and a half-width
at half-maximum of  k = 0:5, all parameters are given in ar-
bitrary units. The frequency resolution is taken as �� = 0:01
also in arbitrary units. We construct a possible PDS realisa-
tion by multiplying each frequency bin by a random number
drawn from an exponentially decaying probability distribu-
tion (see top panel of Fig. 2). This corresponds to a scaled � 2

distribution with two degrees of freedom which is the proba-
bility density function of noise in a PDS. This example PDS
is similar to the PDS of a single stochastically excited and
damped oscillation mode. We then compute the CWT of
the PDS using a mexican-hat wavelet as the mother wavelet
with scale values ranging from �� to the frequency range of
the PDS (see middle panel of Fig. 2). Finally we look at

Figure 2. Top panel : Simulated PDS (black) realisation for a
limit PDS (red) described by a Lorentzian pro�le with a half
width at half maximum  k = 0:5 and height Ik = 10 (arbitrary
units). Middle panel : Mexican-hat CWT of the simulated PDS
realisation in the top panel as a colour map with values indicated
in the side bar. The small dots are at the local maxima across each
scale (a) with nearby points of the same colour being identi�ed as
belonging to the same ridge. The larger orange dot indicated the
maximum CWT value for the longest ridge. Bottom panel : CWT
as a function of scale ( a) for points in the longest ridge from the
middle panel. The horizontal dashed line is placed at a SNR of 1
as de�ned by Du et al. (2006). The orange dot is the maximum
of the ridge which has a SNR close to 14.

all the local maxima in the CWT values as a function of
location ( b) for each scale (a). At small scales the CWT is
sensitive to narrow features, which can be seen by the large
number of local maxima at small values of a. Towards larger
scales the CWT map becomes smoother and more sensitive
to wider features.

Du et al. (2006) noted that the local maxima can be
connected in ridges. The ridges produced by noise are short
and have low absolute CWT values while peaks with a re-
solved width produce longer ridges with larger CWT values.
Thus, peaks are identi�ed by looking at ridges longer than a
certain threshold which have a maximum CWT value larger
than a chosen signal-to-noise ratio (SNR). To take into ac-
count the possibility of a di�erent baseline in each peak,
Du et al. (2006) proposed a SNR de�nition that is local for
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each ridge. It is de�ned as the maximum CWT value on the
ridge divided by the 95 percentile of the absolute value of all
the CWT values at the smallest scale in a frequency range
close to the ridge location. The optimal frequency range for
this local noise de�nition depends on the problem. Here we
used the implementation by Constantine & Percival (2016)
in which the range for the local noise is ten times the fre-
quency resolution (see bottom panel of Fig. 2).

As already mentioned, the algorithm by Du et al. (2006)
was proposed in the context of mass spectrometry with no
assumption of a particular peak shape other than being
positive, approximately symmetric and with a �nite width.
For the particular case of �nding peaks in the background-
normalised PDS of solar-like oscillators we can assume that
resolved oscillation modes can be modelled by Lorentzian
pro�les. With this assumption we can �nd an approximate
relationship between the three parameters of the limit PDS
Lorentzian ¹� k; Ik;  kº and the value of the CWT maximum
W max, its scale amax and location bmaxº. By making 5000
simulations of this single-peak scenario with representative
values, in arbitrary units, of Ik 2 ¹10; 200º and  k 2 ¹5; 30º we
derived the following empirical relationships:

� k ' bmax (3)

 k ' 1:26+ 0:32 amax (4)

Ik ' 2:30
�
W max

p
�� •amax

� 0:93
; (5)

where �� is the PDS frequency resolution simulated to be
in the range �� 2 ¹0:01; 1º. Equations (3){(5) are not rele-
vant for the algorithm as formulated by Du et al. (2006), we
will however use them later as a �rst characterisation of the
oscillation modes in solar-like oscillators.

2.2 Multiple peaks

Unlike the example in Fig. 2 with one mode, solar-like oscil-
lators show several oscillation modes in their PDS. The limit
PDS is thus a superposition of several Lorentzian pro�les.
The peak detection method by Du et al. (2006) is adequate
when the overlap between these Lorentzian pro�les is small,
however it is less reliable when the overlap is signi�cant.
When the separation between two peaks is large there are
two ridges in the CWT each one with a large SNR (see left
panel of Fig. 3). As the central frequencies get closer the
SNR of the ridge corresponding to the peak with smaller
amplitude decreases considerably until it has a SNR simi-
lar to the noise even though it is visible by eye in the PDS
realisation (see right panel of Fig. 3). Reducing the SNR
threshold for such cases usually produces several false posi-
tive identi�cations.

To overcome this limitation we now propose an adjust-
ment to the peak-detection algorithm by Du et al. (2006) for
the context of solar-like oscillators. We use the same CWT
with the mexican-hat mother wavelet and use the same ap-
proach to �nd the ridges of local CWT maxima. We modify
the SNR de�nition using our knowledge about the statisti-
cal distribution of noise in a PDS realisation. In this mod-
i�ed SNR de�nition we consider a global instead of a local
noise level since a background-normalised PDS has a con-
stant baseline. We simulated a PDS realisation of pure white
noise, which has a constant limit PDS with value 1, and de-
�ned as noise the 95 percentile of the absolute values of all

the CWT coe�cients at the lowest scale, which we choose
as the frequency resolution �� . With this SNR de�nition the
noise has a value of approximately 2 and thus the SNR is
de�ned as half the maximum CWT value in a ridge. This
de�nition is adopted throughout this work.

Furthermore, in contrast to the approach taken by Du
et al. (2006) which considers only the global maximum on
each ridge, we consider all local maxima since their occur-
rence frequently indicate a signi�cant peak overlap. By using
Eqs. (3){(5) each one of these local maxima represents a pos-
sible Lorentzian pro�le in the limit PDS (see Fig. 4). Thus,
each combination of local maxima in the CWT ridges is con-
sidered as a possible PDS model. However, when there are
multiple peaks partially overlapping the CWT values close
to the location of a peak are reduced by a negative con-
tribution from neighbouring peaks. This usually results in a
displacement of some local maxima in a ridge to lower scales
and, subsequently, an underestimation of  k for some peaks
when using Eqs. (3){(5). We correct for this underestima-
tion by an MLE parameter optimisation using the values ob-
tained from Eqs. (3){(5) as initial estimates (see Fig. 5). Fi-
nally, to select the most appropriate model for the PDS from
all the possible combinations we use the Akaike Information
Criterion (AIC) which penalises the likelihood of the model
with its complexity to avoid over-�tting (Akaike 1998). Since
a lower AIC value is indicative of a better model, we select
the most appropriate model as the one with the lowest AIC.

Since the total number of local maxima in all the ridges
is usually of the order 102 � 103, depending on the chosen
SNR threshold, comparing all combinations of these points
as possible PDS models is computationally expensive. We
reduce the computational time by considering di�erent seg-
ments of the PDS separately. In the �rst step we select the
local CWT maxima that has the highest scale. According to
Eqs. (3){(5) this corresponds to a peak located at a certain
frequency � k and a line width  k . We de�ne a PDS region
local to this peak as the PDS in the frequency range � k � 2 k .
Finally, we consider all the local maxima in this region and
select the best model as described before.

The algorithm presented here works optimally for oscil-
lations that have a width larger than the frequency resolu-
tion of the PDS. This might not be the case for some of the
oscillations. In such circumstances the peak is best modelled
by a sinc2 pro�le. We �nd these oscillations by performing
the peak detection as described above and looking at the
residuals of this �t with a false-alarm probability test for a
single frequency bin (Appourchaux et al. 2012).

3 FALSE POSITIVE PEAK DETECTIONS

Since noise in the PDS can generate false positive detections,
it is useful to asses the probability that a given peak can be
generated only by random chance. A signi�cance test can
be made by the ratio between the likelihood of the observed
PDS assuming a model with the peak included and its like-
lihood if the peak is omitted from the model. Alternatively,
the AIC di�erence between both models provides a similar
and more robust test that penalises for the number of de-
grees of freedom in the model. Complementary to these tests,
the wavelet-based SNR described previously can also be used
as a signi�cance test that is sensitive to di�erent features of
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Figure 3. Left panels : The upper part shows a limit PDS represented by two Lorentzian pro�les with heights I1 = 120 and I2 = 150,
half widths at half maximum  1 = 0:5,  2 = 0:75 and central frequencies � 2 � � 1 = 5 (red) and the simulated PDS realisation (black).
The bottom part shows a colour map of the CWT of the simulated PDS realisations with the identi�ed ridges as small dots. The bigger
orange dots are at the maximum CWT values on each ridge that have a SNR greater than 3 as de�ned by Du et al. (2006). Right panels :
Same as before with a reduced distance between the central frequencies to � 2 � � 1 = 3. The black dots are at the maximum CWT value
for ridges with SNR greater or equal than 1.84 and smaller than 3.

the PDS. Since our algorithm uses a mexican-hat mother
wavelet, which has the general shape of the most common
peaks, the SNR is particularly suited to assess the signif-
icance of solar-like oscillations. The wavelet-based SNR is,
on average, a monotonically increasing function of the AIC
di�erence between a PDS model with the peak and without
it. However, their relationship is non linear and has consid-
erable spread so they provide to some extent complementary
information. In this section we describe the statistical prop-
erties of the SNR for peaks generated purely by random
noise in the PDS and quantify the number of such peaks
that we can expect to detect in any given PDS realisation.

To estimate the chance of false positive peak detections
we generated 105 PDS each one containing 104 frequency
bins with only noise having the same distribution as the
noise in a background-normalised PDS, i.e. a scaled� 2 dis-
tribution with 2 degrees of freedom. We applied the wavelet-
based peak detection method described here to all the gener-
ated PDS and aggregated the results. We found that there
is a 10� 3 chance per frequency bin in a PDS of having a
false positive detection with a SNR greater than 1.1 and
an AIC di�erence greater than 0. For a typical Kepler PDS
this amounts to approximately 30 false positives in the whole
PDS. However, the number is reduced when considering only
the power excess region (see below).

The false-positive detections have di�erent amplitudes
and their number depends on the SNR threshold. To quan-
titatively characterise this dependence we de�ne Nfp¹A; sº to
be the number of false-positive peak detections that have
an amplitude greater than or equal to A and a SNR greater
than or equal to s. Since the number Nfp¹A; sº depends also
on the number of frequency bins, n, in the PDS it is more

convenient to normalise it by n (see Fig. 6 Nfp•n). Addition-
ally, to take into account the PDS frequency resolution, �� .
we calculate Nfp as a function of A0 = A•

p
�� By using sym-

bolic regression (Searson 2015) we discovered thatNfp can
be described by a function that is symmetric in A0 and s and
has the form

log
�
Nfp

�
=c0 + c1s+ c2A0

+ c3s2 + c4A02 + c5sA0 (6)

+ c6¹sA0º2 + c7¹A0• sº2 + c8¹s• A0º2 + log¹nº :

We further re�ned the symbolic regression estimate of
the coe�cients ci by using a multiple linear regres-
sion with the same model. That is, we considered�
s; A0; s2; A02; sA0; ¹sA0º2; ¹A0• sº2; ¹s• A0º2

	
as linear predictors

for log
�
Nfp•n

�
and performed a least squares regression to

estimate ci . The obtained coe�cient values, their standard
error and the null hypothesis probability for each term ( p-
value) are reported in Table 1.

To calculate Nfp we must also provide the number of
frequency bins n under consideration. The value of Nfp will
change considerably whether we take n as the number of
frequency bins in the whole PDS or only in the power excess
region. Since we only expect stochastically excited global
oscillations in the power excess region we adopt n as the
number of frequency bins in the power excess region. To
de�ne this region precisely we adopt the global description
of the power excess as a gaussian function centred at� max
with a width of the gaussian � env and take n as the number
of frequency bins in � max � 4� env. This de�nition is adopted
throughout this work.

In summary, given a peak amplitude A and SNR s we
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Figure 4. Top panel : CWT of the simulated PDS realisation
from the right panel of Fig. 3 as a colour map with the identi�ed
ridges as small dots. The larger orange dots are at the local CWT
maxima of the two longest ridges. The horizontal dashed lines
span 4 k for each point as inferred from Eq. (4). Middle and
bottom panels : CWT as a function of scale ( a) for the longest
and second longest ridges in the CWT map from the top panel,
respectively. The orange points denote the local maxima with the
labels being the same as in the top panel.

Table 1. Least-squares linear regression estimate for the param-
eter values, standard errors and null-hypothesis probability ( p-
value) for each parameter in Eq. 6.

estimate standard error p-value

c0 -9.63 1.18 2.67� 10� 14

c1 3.99 0.75 2.13� 10� 7

c2 2.24 0.36 1.88� 10� 9

c3 -0.21 0.06 1.94� 10� 4

c4 -0.07 0.01 1.49� 10� 6

c5 -1.93 0.19 7.99� 10� 20

c6 0.027 0.003 1.73� 10� 15

c7 -0.14 0.01 4.30� 10� 32

c8 -2.78 0.24 1.71� 10� 25

Figure 5. Same simulated PDS realisation (black) and limit PDS
(red) as the right panel of Fig. 3. The vertical dashed lines are at
� k � 2 k as obtained from Eqs. (3){(5) for point 4 from Fig. 4. In
orange a PDS model is shown based on Eqs. (3){(5) using point
4 (top panel ) and points 3 and 6 ( bottom panel ). In blue is the
model obtained after an MLE parameter optimisation using the
previous values as initial guesses in the range � k � 2 k . The AIC
values of the MLE are calculated in the PDS region delimited by
the vertical dashed lines. A lower AIC indicates a better model.

can estimate Nfp using Eq. (6) using A0 = A•
p

�� . The num-
ber Nfp is the expected number of false positives in the power
excess region that have an amplitude equal or greater than
A and a SNR equal or greater than s. A value of Nfp greater
than 1 indicates that the peak is more likely to have been
generated by noise than from a real signal. Conversely, if Nfp
is smaller than 1, it is more probable that the peak origi-
nates from a process di�erent than noise. Smaller values of
Nfp denote that a peak is less likely to be a false positive
detection.

4 DETECTION PROBABILITY

Complementary to assessing the signi�cance of a peak de-
tection we now address the signi�cance of the lack of detec-
tions, that is, for a given peak amplitude we estimate the
probability that the algorithm presented here can recognise
it among the noise. To estimate this detection probability
we simulated 105 di�erent PDS each one with a Lorentzian
peak multiplied by noise as described in section 2.1. The
Lorentzian peaks were generated with parameters in the
ranges  k • �� 2 ¹2; 10º and I 2 ¹1; 10º in arbitrary units. We
then applied the algorithm presented here to the PDS us-
ing a SNR of 1.1 and attempted to recover the input peak.
From these simulations we estimated the proportion of times
P that a peak with linewidth  k • �� was not successfully re-
covered (see Fig. 7). It can be seen from Fig. 7 that P can be
described as a function of  k • �� alone. In this case it is not
necessary to use a model discovery technique, like symbolic
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